The Future of Atopic Dermatitis Treatment

  • Nupur Patel
  • Lindsay C. Strowd
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1027)


In recent years, there has been a growing movement towards the use of targeted therapies in treating of atopic dermatitis (AD), parallel to that which has occurred in psoriasis. Among the systemic medications being studied are subcutaneous or intravenously administered biologic drugs targeting specific molecules such as IL4, IL13, IL17, and IgE. Non-biologic oral therapies are also being developed for AD and include small molecule drugs targeting phosphodiesterase type IV (PDE4) inhibition or Janus Kinase (JAK) inhibition. Numerous topical formulations are also being studied, with some formulations that are novel therapies that act as topical biologic or small molecule agents with mechanisms of action similar to systemic treatments. Others are being developed as skin barrier repair therapies for reduction of AD symptoms. This chapter will discuss new advances in AD treatment from medications in the initial stages of development to those nearing FDA approval.


Atopic dermatitis Future therapeutics Advances in treatment Targeted therapies Systemic treatment Topical treatment 


  1. 1.
    Harskamp CT, Armstrong AW. Immunology of atopic dermatitis: novel insights into mechanisms and immunomodulatory therapies. Semin Cutan Med Surg. 2013;32(3):132–9. Accessed 13 Feb 2017.CrossRefPubMedGoogle Scholar
  2. 2.
    Vatrella A, Fabozzi I, Calabrese C, Maselli R, Pelaia G. Dupilumab: a novel treatment for asthma. J Asthma Allergy. 2014;7:123–30. doi: 10.2147/JAA.S52387.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Montes-Torres A, Llamas-Velasco M, Pérez-Plaza A, Solano-López G, Sánchez-Pérez J. Biological treatments in atopic dermatitis. J Clin Med. 2015;4(4):593–613. doi: 10.3390/jcm4040593.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gittler JK, Shemer A, Suárez-Fariñas M, et al. Progressive activation of TH2/TH22 cytokines and selective epidermal proteins characterizes acute and chronic atopic dermatitis. J Allergy Clin Immunol. 2012;130(6):1344–54. doi: 10.1016/j.jaci.2012.07.012.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Simpson EL, Bieber T, Guttman-Yassky E, et al. Two phase 3 trials of dupilumab versus placebo in atopic dermatitis. N Engl J Med. 2016;375(24):2335–48. doi: 10.1056/NEJMoa1610020.CrossRefPubMedGoogle Scholar
  6. 6.
    Beck LA, Thaci D, Hamilton JD, et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med. 2014;371(2):130–9. doi: 10.1056/NEJMoa1314768.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang D, Beck LA. Immunologic targets in atopic dermatitis and emerging therapies: an update. Am J Clin Dermatol. 2016;17(5):425–43. doi: 10.1007/s40257-016-0205-5.CrossRefPubMedGoogle Scholar
  8. 8.
    MedImmune LLC. Phase 2 study to evaluate the efficacy and safety of tralokinumab in adults with atopic dermatitis (D2213C00001).
  9. 9.
    Jancin B. Conference Coverage: Lebrikizumab opens new door in atopic dermatitis therapy. Dermatology News. Published 2016. Accessed 13 Feb 2017.
  10. 10.
    Arai I, Tsuji M, Takeda H, Akiyama N, Saito SA. single dose of interleukin-31 (IL-31) causes continuous itch-associated scratching behaviour in mice. Exp Dermatol. 2013;22(10):669–71. doi: 10.1111/exd.12222.CrossRefPubMedGoogle Scholar
  11. 11.
    Dillon SR, Sprecher C, Hammond A, et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol. 2004;5(7):752–60. doi: 10.1038/ni1084.CrossRefPubMedGoogle Scholar
  12. 12.
    Hawro T, Saluja R, Weller K, Altrichter S, Metz M, Maurer M. Interleukin-31 does not induce immediate itch in atopic dermatitis patients and healthy controls after skin challenge. Allergy. 2014;69(1):113–7. doi: 10.1111/all.12316.CrossRefPubMedGoogle Scholar
  13. 13.
    Kasutani K, Fujii E, Ohyama S, et al. Anti-IL-31 receptor antibody is shown to be a potential therapeutic option for treating itch and dermatitis in mice. Br J Pharmacol. 2014;171(22):5049–58. doi: 10.1111/bph.12823.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Hanifin JM, Irvine AD, McLean WH, et al. Commentary: new drugs for atopic dermatitis may provide clues to basic mechanisms of itch and inflammation. J Am Acad Dermatol. 2016;75(3):504–5. doi: 10.1016/j.jaad.2016.06.013.CrossRefPubMedGoogle Scholar
  15. 15.
    McKnight W. Conference coverage: nemolizumab improved most common symptoms in moderate, severe atopic dermatitis | Dermatology News. Dermatology News. Published 2016. Accessed 12 Feb 2017.
  16. 16.
    Nograles KE, Zaba LC, Shemer A, et al. IL-22–producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17–producing TH17 T cells. J Allergy Clin Immunol. 2009;123(6):1244–1252.e2. doi: 10.1016/j.jaci.2009.03.041.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Guttman-Yassky E, Dhingra N, Leung DY. New era of biologic therapeutics in atopic dermatitis. Expert Opin Biol Ther. 2013;13(4):549–61. doi: 10.1517/14712598.2013.758708.CrossRefPubMedGoogle Scholar
  18. 18.
    Fujita H. The role of IL-22 and Th22 cells in human skin diseases. J Dermatol Sci. 2013;72(1):3–8. doi: 10.1016/j.jdermsci.2013.04.028.CrossRefPubMedGoogle Scholar
  19. 19.
    Auriemma M, Vianale G, Amerio P, Reale M. Cytokines and T cells in atopic dermatitis. Eur Cytokine Netw. 2013;24(1):37–44. doi: 10.1684/ecn.2013.0333.PubMedGoogle Scholar
  20. 20.
    Guttman E. A Study of ILV-94 (Anti-22 Antibody) Administered via IV in Atopic Dermatitis.
  21. 21.
    Krueger JG, Fretzin S, Suárez-Fariñas M, et al. IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. J Allergy Clin Immunol. 2012;130(1):145–154.e9. doi: 10.1016/j.jaci.2012.04.024.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Papp KA, Reid C, Foley P, et al. Anti-IL-17 receptor antibody AMG 827 leads to rapid clinical response in subjects with moderate to severe psoriasis: results from a phase I, randomized, placebo-controlled trial. J Invest Dermatol. 2012;132(10):2466–9. doi: 10.1038/jid.2012.163.CrossRefPubMedGoogle Scholar
  23. 23.
    Griffiths CEM, Strober BE, van de Kerkhof P, et al. Comparison of ustekinumab and etanercept for moderate-to-severe psoriasis. N Engl J Med. 2010;362(2):118–28. doi: 10.1056/NEJMoa0810652.CrossRefPubMedGoogle Scholar
  24. 24.
    C-Y W, Chang Y-T, Juan C-K, et al. Depression and insomnia in patients with psoriasis and psoriatic arthritis taking tumor necrosis factor antagonists. Medicine (Baltimore). 2016;95(22):e3816. doi: 10.1097/MD.0000000000003816.CrossRefGoogle Scholar
  25. 25.
    Koutruba N, Emer J, Lebwohl M. Review of ustekinumab, an interleukin-12 and interleukin-23 inhibitor used for the treatment of plaque psoriasis. Ther Clin Risk Manag. 2010;6:123–41. Accessed 13 Feb 2017.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Suárez-Fariñas M, Ungar B, Noda S, et al. Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel TH17/TH22 skewing. J Allergy Clin Immunol. 2015;136(5):1277–87. doi: 10.1016/j.jaci.2015.06.032.CrossRefPubMedGoogle Scholar
  27. 27.
    Khattri S, Brunner PM, Garcet S, et al. Efficacy and safety of ustekinumab treatment in adults with moderate-to-severe atopic dermatitis. Exp Dermatol. 2017;26(1):28–35. doi: 10.1111/exd.13112.CrossRefPubMedGoogle Scholar
  28. 28.
    Tamagawa-Mineoka R, Okuzawa Y, Masuda K, Katoh N. Increased serum levels of interleukin 33 in patients with atopic dermatitis. J Am Acad Dermatol. 2014;70(5):882–8. doi: 10.1016/j.jaad.2014.01.867.CrossRefPubMedGoogle Scholar
  29. 29.
    Savinko T, Matikainen S, Saarialho-Kere U, et al. IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J Invest Dermatol. 2012;132(5):1392–400. doi: 10.1038/jid.2011.446.CrossRefPubMedGoogle Scholar
  30. 30.
    Xencor Reports XmAb®7195 Top-line Interim Phase 1a Results Showing Rapid Reduction of Serum IgE in. Accessed 13 Feb 2017.
  31. 31.
    Arm JP, Bottoli I, Skerjanec A, et al. Pharmacokinetics, pharmacodynamics and safety of QGE031 (ligelizumab), a novel high-affinity anti-IgE antibody, in atopic subjects. Clin Exp Allergy. 2014;44(11):1371–85. doi: 10.1111/cea.12400.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell–mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3(7):673–80. doi: 10.1038/ni805.PubMedGoogle Scholar
  33. 33.
    Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–16. doi: 10.1016/S0140-6736(14)61376-3.CrossRefPubMedGoogle Scholar
  34. 34.
    Hawkey CJ, Allez M, Clark MM, et al. Autologous hematopoetic stem cell transplantation for refractory crohn disease. JAMA. 2015;314(23):2524. doi: 10.1001/jama.2015.16700.CrossRefPubMedGoogle Scholar
  35. 35.
    Petrou P, Gothelf Y, Argov Z, et al. Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis. JAMA Neurol. 2016;73(3):337. doi: 10.1001/jamaneurol.2015.4321.CrossRefPubMedGoogle Scholar
  36. 36.
    Connick P, Kolappan M, Crawley C, et al. Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurol. 2012;11(2):150–6. doi: 10.1016/S1474-4422(11)70305-2.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sun L, Akiyama K, Zhang H, et al. Mesenchymal stem cell transplantation reverses multiorgan dysfunction in systemic lupus erythematosus mice and humans. Stem Cells. 2009;27(6):1421–32. doi: 10.1002/stem.68.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet. 2008;371(9624):1579–86. doi: 10.1016/S0140-6736(08)60690-X.CrossRefPubMedGoogle Scholar
  39. 39.
    Kim H-S, Yun J-W, Shin T-H, et al. Human umbilical cord blood mesenchymal stem cell-derived PGE 2 and TGF-β1 alleviate atopic dermatitis by reducing mast cell degranulation. Stem Cells. 2015;33(4):1254–66. doi: 10.1002/stem.1913.CrossRefPubMedGoogle Scholar
  40. 40.
    Na K, Yoo HS, Zhang YX, et al. Bone marrow-derived clonal mesenchymal stem cells inhibit ovalbumin-induced atopic dermatitis. Cell Death Dis. 2014;5(7):e1345. doi: 10.1038/cddis.2014.299.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kim H-S, Lee JH, Roh K-H, Jun HJ, Kang K-S, Kim T-Y. Clinical trial of human umbilical cord blood-derived stem cells for the treatment of moderate-to-severe atopic dermatitis: phase I/IIa studies. Stem Cells. 2017;35(1):248–55. doi: 10.1002/stem.2401.CrossRefPubMedGoogle Scholar
  42. 42.
    Dastidar SG, Rajagopal D, Ray A. Therapeutic benefit of PDE4 inhibitors in inflammatory diseases. Curr Opin Investig Drugs. 2007;8(5):364–72. Accessed 13 Feb 2017.PubMedGoogle Scholar
  43. 43.
    Megna M, Napolitano M, Patruno C, et al. Systemic treatment of adult atopic dermatitis: a review. Dermatol Ther (Heidelb). 2016;7(1):1–23. doi: 10.1007/s13555-016-0170-1.CrossRefGoogle Scholar
  44. 44.
    Souness JE, Aldous D, Sargent C. Immunosuppressive and anti-inflammatory effects of cyclic AMP phosphodiesterase (PDE) type 4 inhibitors. Immunopharmacology. 2000;47(2–3):127–62. Accessed 13 Feb 2017.CrossRefPubMedGoogle Scholar
  45. 45.
    Samrao A, Berry TM, Goreshi R, Simpson ELA. pilot study of an oral phosphodiesterase inhibitor (apremilast) for atopic dermatitis in adults. Arch Dermatol. 2012;148(8):890–7. doi: 10.1001/archdermatol.2012.812.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Griffiths CEM, Van Leent EJM, Gilbert M, Traulsen J. Cipamyflline Study Group. Randomized comparison of the type 4 phosphodiesterase inhibitor cipamfylline cream, cream vehicle and hydrocortisone 17-butyrate cream for the treatment of atopic dermatitis. Br J Dermatol. 2002;147(2):299–307. Accessed 13 Feb 2017.CrossRefPubMedGoogle Scholar
  47. 47.
    Hanifin JM, Chan SC, Cheng JB, et al. Type 4 phosphodiesterase inhibitors have clinical and in vitro anti-inflammatory effects in atopic dermatitis. J Invest Dermatol. 1996;107(1):51–6. Accessed 13 Feb 2017.CrossRefPubMedGoogle Scholar
  48. 48.
    Hoppmann J, Galetzka C, Höfgen N, Rundfeldt C, Bämer W, Kietzmann M. The phosphodiesterase 4 inhibitor AWD 12-281 is active in a new guinea-pig model of allergic skin inflammation predictive of human skin penetration and suppresses both Th1 and Th2 cytokines in mice. J Pharm Pharmacol. 2005;57(12):1609–17. doi: 10.1211/jpp.57.12.0011.CrossRefPubMedGoogle Scholar
  49. 49.
    Mease PJ. Apremilast: a phosphodiesterase 4 inhibitor for the treatment of psoriatic arthritis. Rheumatol Ther. 2014;1(1):1–20. doi: 10.1007/s40744-014-0005-4.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Fala L. Otezla (Apremilast), an oral PDE-4 inhibitor, receives FDA approval for the treatment of patients with active psoriatic arthritis and plaque psoriasis. Am Health Drug Benefits. 2015;8(Spec Feature):105–10. Accessed 13 Feb 2017.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Volf EM, S-C A, Dumont N, Scheinman P, Gottlieb ABA. phase 2, open-label, investigator-initiated study to evaluate the safety and efficacy of apremilast in subjects with recalcitrant allergic contact or atopic dermatitis. J Drugs Dermatol. 2012;11(3):341–6. Accessed 13 Feb 2017.PubMedGoogle Scholar
  52. 52.
    Ghoreschi K, Gadina M. Jakpot! New small molecules in autoimmune and inflammatory diseases. Exp Dermatol. 2014;23(1):7–11. doi: 10.1111/exd.12265.CrossRefPubMedGoogle Scholar
  53. 53.
    Levy LL, Urban J, King BA. Treatment of recalcitrant atopic dermatitis with the oral Janus kinase inhibitor tofacitinib citrate. J Am Acad Dermatol. 2015;73(3):395–9. doi: 10.1016/j.jaad.2015.06.045.CrossRefPubMedGoogle Scholar
  54. 54.
    Keystone EC, Taylor PC, Drescher E, et al. Safety and efficacy of baricitinib at 24 weeks in patients with rheumatoid arthritis who have had an inadequate response to methotrexate. Annals of the Rheumatic Diseases. 2015;74(2):333–340. doi: 10.1136/annrheumdis-2014-206478.
  55. 55.
    Jabbari A, Dai Z, Xing L, et al. Reversal of Alopecia Areata Following Treatment With the JAK1/2 Inhibitor Baricitinib. EBioMedicine. 2015;2(4):351–355. doi: 10.1016/j.ebiom.2015.02.015.
  56. 56.
    Bowton DL, Dmitrienko AA, Israel E, Zeiher BG, Sides GD. Impact of a soluble phospholipase A2 inhibitor on inhaled allergen challenge in subjects with asthma. J Asthma. 2005;42(1):65–71. Accessed 14 Feb 2017.CrossRefPubMedGoogle Scholar
  57. 57.
    Leaker BR, Barnes PJ, O’Connor BJ, et al. The effects of the novel SHIP1 activator AQX-1125 on allergen-induced responses in mild-to-moderate asthma. Clin Exp Allergy. 2014;44(9):1146–53. doi: 10.1111/cea.12370.CrossRefPubMedGoogle Scholar
  58. 58.
    Pettipher R, Hansel TT, Armer R. Antagonism of the prostaglandin D2 receptors DP1 and CRTH2 as an approach to treat allergic diseases. Nat Rev Drug Discov. 2007;6(4):313–25. doi: 10.1038/nrd2266.CrossRefPubMedGoogle Scholar
  59. 59.
    Jarnagin K, Chanda S, Coronado D, et al. Crisaborole topical ointment, 2%: a nonsteroidal, topical, anti-inflammatory phosphodiesterase 4 inhibitor in clinical development for the treatment of atopic dermatitis. J Drugs Dermatol. 2016;15(4):390–6. Accessed 5 Dec 2016.PubMedGoogle Scholar
  60. 60.
    Stein Gold LF, Spelman L, Spellman MC, Hughes MH, Zane LTA. Phase 2, randomized, controlled, dose-ranging study evaluating crisaborole topical ointment, 0.5% and 2% in adolescents with mild to moderate atopic dermatitis. J Drugs Dermatol. 2015;14(12):1394–9. Accessed 16 Feb 2017.PubMedGoogle Scholar
  61. 61.
    Paller AS, Tom WL, Lebwohl MG, et al. Efficacy and safety of crisaborole ointment, a novel, nonsteroidal phosphodiesterase 4 (PDE4) inhibitor for the topical treatment of atopic dermatitis (AD) in children and adults. J Am Acad Dermatol. 2016;75(3):494–503.e4. doi: 10.1016/j.jaad.2016.05.046.CrossRefPubMedGoogle Scholar
  62. 62.
    Furue M, Kitahara Y, Akama H, et al. Safety and efficacy of topical E6005, a phosphodiesterase 4 inhibitor, in Japanese adult patients with atopic dermatitis: results of a randomized, vehicle-controlled, multicenter clinical trial. J Dermatol. 2014;41(7):577–85. doi: 10.1111/1346-8138.12534.CrossRefPubMedGoogle Scholar
  63. 63.
    Ohba F, Matsuki S, Imayama S, et al. Efficacy of a novel phosphodiesterase inhibitor, E6005, in patients with atopic dermatitis: an investigator-blinded, vehicle-controlled study. J Dermatolog Treat. 2016;27(5):467–72. doi: 10.3109/09546634.2016.1157257.CrossRefPubMedGoogle Scholar
  64. 64.
    Hanifin JM, Ellis CN, Frieden IJ, et al. OPA-15406, a novel, topical, nonsteroidal, selective phosphodiesterase-4 (PDE4) inhibitor, in the treatment of adult and adolescent patients with mild to moderate atopic dermatitis (AD): a phase-II randomized, double-blind, placebo-controlled study. J Am Acad Dermatol. 2016;75(2):297–305. doi: 10.1016/j.jaad.2016.04.001.CrossRefPubMedGoogle Scholar
  65. 65.
    Quintas-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010;115(15):3109–17. doi: 10.1182/blood-2009-04-214957.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Slominski A, Pisarchik A, Zbytek B, Tobin DJ, Kauser S, Wortsman J. Functional activity of serotoninergic and melatoninergic systems expressed in the skin. J Cell Physiol. 2003;196(1):144–53. doi: 10.1002/jcp.10287.CrossRefPubMedGoogle Scholar
  67. 67.
    Palmqvist N, Siller M, Klint C, Sjödin AA. human and animal model-based approach to investigating the anti-inflammatory profile and potential of the 5-HT2B receptor antagonist AM1030. J Inflamm. 2016;13(1):20. doi: 10.1186/s12950-016-0127-2.CrossRefGoogle Scholar
  68. 68.
    Kanhere A, Hertweck A, Bhatia U, et al. T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nat Commun. 2012;3:1268. doi: 10.1038/ncomms2260.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Peltonen J, Pylkkänen L, Jansén C, et al. Three randomised phase I/IIa trials of 5% Cis-urocanic acid emulsion cream in healthy adult subjects and in patients with atopic dermatitis. Acta Derm Venereol. 2014;94(4):415–20. doi: 10.2340/00015555-1735.CrossRefPubMedGoogle Scholar
  70. 70.
    Kezic S, O’Regan GM, Yau N, et al. Levels of filaggrin degradation products are influenced by both filaggrin genotype and atopic dermatitis severity. Allergy. 2011;66(7):934–40. doi: 10.1111/j.1398-9995.2010.02540.x.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Bissonnette R, Poulin Y, Zhou Y, et al. Efficacy and safety of topical WBI-1001 in patients with mild to severe atopic dermatitis: results from a 12-week, multicentre, randomized, placebo-controlled double-blind trial. Br J Dermatol. 2012;166(4):853–60. doi: 10.1111/j.1365-2133.2011.10775.x.CrossRefPubMedGoogle Scholar
  72. 72.
    Zhao Y, Meng S, Noto PB, et al. The LXR ligand VTP-38543 represents a new class of therapeutic agents for the treatment of atopic dermatitis. (Poster presented at Society for Investigative Dermatology; May 2015; Atlanta, Georgia).Google Scholar
  73. 73.
    Friedman A, Agnihothri R. Eczema Drugs in Development | National Eczema Association. Published 2015. Accessed 27 Feb 2017.
  74. 74.
    Battersby AJ, Khara J, Wright VJ, Levy O, Kampmann B. Antimicrobial proteins and peptides in early life: ontogeny and translational opportunities. Front Immunol. 2016;7:309. doi: 10.3389/fimmu.2016.00309.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Arias CA, Murray BE. Antibiotic-resistant bugs in the 21st century—a clinical super-challenge. N Engl J Med. 2009;360(5):439–43. doi: 10.1056/NEJMp0804651.CrossRefPubMedGoogle Scholar
  76. 76.
    Pintér E, Pozsgai G, Hajna Z, Helyes Z, Szolcsányi J. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions. Br J Clin Pharmacol. 2014;77(1):5–20. doi: 10.1111/bcp.12097.CrossRefPubMedGoogle Scholar
  77. 77.
    Maggi CA. Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog Neurobiol. 1995;45(1):1–98. Accessed 16 Feb 2017.CrossRefPubMedGoogle Scholar
  78. 78.
    Joos GF, Vincken W, Louis R, et al. Dual tachykinin NK1/NK2 antagonist DNK333 inhibits neurokinin A-induced bronchoconstriction in asthma patients. Eur Respir J. 2004;23(1):76–81. Accessed 16 Feb 2017.CrossRefPubMedGoogle Scholar
  79. 79.
    Werfel T. Overview of ZPL-3893787 (ZPL-389) clinical trial for atopic dermatitis. Eur Med J. 2016. Accessed 16 Feb 2017.
  80. 80.
    Machelska H, Pflüger M, Weber W, et al. Peripheral effects of the kappa-opioid agonist EMD 61753 on pain and inflammation in rats and humans. J Pharmacol Exp Ther. 1999;290(1):354–61. Accessed 16 Feb 2017.PubMedGoogle Scholar
  81. 81.
    Millan MJ, Członkowski A, Morris B, et al. Inflammation of the hind limb as a model of unilateral, localized pain: influence on multiple opioid systems in the spinal cord of the rat. Pain. 1988;35(3):299–312. Accessed 16 Feb 2017.CrossRefPubMedGoogle Scholar
  82. 82.
    Tominaga M, Ogawa H, Takamori K. Possible roles of epidermal opioid systems in pruritus of atopic dermatitis. J Invest Dermatol. 2007;127(9):2228–35. doi: 10.1038/sj.jid.5700942.CrossRefPubMedGoogle Scholar
  83. 83.
    Inan S, Cowan A. Kappa opioid agonists suppress chloroquine-induced scratching in mice. Eur J Pharmacol. 2004;502(3):233–7. doi: 10.1016/j.ejphar.2004.09.010.CrossRefPubMedGoogle Scholar
  84. 84.
    Roblin D, Yosipovitch G, Boyce B, et al. Topical TrkA kinase inhibitor CT327 is an effective, novel therapy for the treatment of pruritus due to psoriasis: results from experimental studies, and efficacy and safety of CT327 in a phase 2b clinical trial in patients with psoriasis. Acta Derm Venereol. 2015;95(5):542–8. doi: 10.2340/00015555-2047.CrossRefPubMedGoogle Scholar
  85. 85.
    Lim K-M, Park Y-H. Development of PAC-14028, a novel transient receptor potential vanilloid type 1 (TRPV1) channel antagonist as a new drug for refractory skin diseases. Arch Pharm Res. 2012;35(3):393–6. doi: 10.1007/s12272-012-0321-6.CrossRefPubMedGoogle Scholar
  86. 86.
    Yun J-W, Seo JA, Jeong YS, et al. TRPV1 antagonist can suppress the atopic dermatitis-like symptoms by accelerating skin barrier recovery. J Dermatol Sci. 2010;62(1):8–15. doi: 10.1016/j.jdermsci.2010.10.014.PubMedGoogle Scholar
  87. 87.
    Cheon C, Park S, Park J-S, et al. KM110329 in adult patients with atopic dermatitis: a randomised, double-blind, placebo-controlled, multicentre trial—study protocol. BMC Complement Altern Med. 2013;13(1):335. doi: 10.1186/1472-6882-13-335.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of DermatologyWake Forest University School of MedicineWinston SalemUSA

Personalised recommendations