Advertisement

Self-directed Transport on Nanostructured Plasmonic Sensors

Chapter
  • 748 Downloads
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

Analytical sensors using varying detection strategies have been widely and successfully employed for advances in areas such as drug discovery, disease diagnosis and study of biological systems. Many of these sensors utilize plasmonic metallic nanostructures which can concentrate electromagnetic fields in nanoscale regions leading to many fold enhancement in optical signal obtained from the molecules. They employ techniques including fluorescence, surface plasmon resonance (SPR)-based refractive index sensing, surface-enhanced Raman spectroscopy (SERS) and other forms of vibrational spectroscopy for molecular characterization. However, the performance of these devices relies on effective transport of the target molecules to these nanoscale detection sites. Guided transport is extremely important for fast detection in cases where the concentration of molecules is really low and for accurate measurements of protein–protein binding kinetics. In this chapter, we discuss nanostructured biosensing substrates which can spontaneously direct the flow of molecules in solution towards the sensing hotspots. These devices demonstrate improved detection sensitivity, while minimizing the limitations and complexity imposed upon the system. Additionally, they can trap biological particles such as organelles and liposomes on the sensor surface, facilitating on-chip analysis of single particles. This chapter discusses a few methods which have been utilized for concentration of molecules on plasmonic sensing surfaces, without the application of external power sources.

References

  1. 1.
    Sheehan PE, Whitman LJ (2005) Detection limits for nanoscale biosensors. Nano Lett 5(4):803–807CrossRefGoogle Scholar
  2. 2.
    Squires TM, Messinger RJ, Manalis SR (2008) Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotechnol 26(4):417–426CrossRefGoogle Scholar
  3. 3.
    Escobedo C, Brolo AG, Gordon R, Sinton D (2010) Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem 82(24):10015–10020CrossRefGoogle Scholar
  4. 4.
    Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, Gordon R, Sinton D (2009) Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 81(11):4308–4311CrossRefGoogle Scholar
  5. 5.
    Yanik AA, Huang M, Artar A, Chang T-Y, Altug H (2010) Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl Phys Lett 96(2):021101CrossRefGoogle Scholar
  6. 6.
    Escobedo C, Brolo AG, Gordon R, Sinton D (2012) Optofluidic concentration: plasmonic nanostructure as concentrator and sensor. Nano Lett 12(3):1592–1596CrossRefGoogle Scholar
  7. 7.
    Barik A, Chen X, Oh S-H (2016) Ultralow-power electronic trapping of nanoparticles with sub-10 nm gold nanogap electrodes. Nano Lett 16(10):6317–6324CrossRefGoogle Scholar
  8. 8.
    Barik A, Otto LM, Yoo D, Jose J, Johnson TW, Oh S-H (2014) Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays. Nano Lett 14(4):2006–2012CrossRefGoogle Scholar
  9. 9.
    Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653):827–829CrossRefGoogle Scholar
  10. 10.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667–669CrossRefGoogle Scholar
  11. 11.
    Barnes WL, Murray WA, Dintinger J, Devaux E, Ebbesen TW (2004) Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. Phys Rev Lett 92(10)Google Scholar
  12. 12.
    Gao HW, Henzie J, Odom TW (2006) Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett 6(9):2104–2108CrossRefGoogle Scholar
  13. 13.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B Chem 54(1–2):3–15CrossRefGoogle Scholar
  14. 14.
    Brolo AG, Arctander E, Gordon R, Leathem B, Kavanagh KL (2004) Nanohole-enhanced Raman scattering. Nano Lett 4(10):2015–2018CrossRefGoogle Scholar
  15. 15.
    Lesuffleur A, Im H, Lindquist N, Oh S (2007) Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Appl Phys Lett 90(24): 243110Google Scholar
  16. 16.
    Im H, Lee SH, Wittenberg NJ, Johnson TW, Lindquist NC, Nagpal P, Norris DJ, Oh S-H (2011) Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing. ACS Nano 5(8):6244–6253CrossRefGoogle Scholar
  17. 17.
    Yu QM, Guan P, Qin D, Golden G, Wallace PM (2008) Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett 8(7):1923–1928CrossRefGoogle Scholar
  18. 18.
    Lee S, Bantz K, Lindquist N, Oh S, Haynes C (2009) Self-assembled plasmonic nanohole arrays. Langmuir 25(23):13685–13693Google Scholar
  19. 19.
    Brolo AG, Kwok SC, Moffitt MG, Gordon R, Riordon J, Kavanagh KL (2005) Enhanced fluorescence from arrays of nanoholes in a gold film. J Am Chem Soc 127(42):14936–14941CrossRefGoogle Scholar
  20. 20.
    Saboktakin M, Ye X, Chettiar U, Engheta N, Murray C, Kagan C (2013) Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays. ACS Nano 7(8):7186–7192CrossRefGoogle Scholar
  21. 21.
    Kumar S, Wittenberg NJ, Oh S-H (2013) Nanopore-induced spontaneous concentration for optofluidic sensing and particle assembly. Anal Chem 85(2):971–977CrossRefGoogle Scholar
  22. 22.
    Kumar S, Wolken GG, Wittenberg NJ, Arriaga EA, Oh S-H (2015) Nanohole array-directed trapping of mammalian mitochondria enabling single organelle analysis. Anal Chem 87(24):11973–11977CrossRefGoogle Scholar
  23. 23.
    Handique K, Gogoi BP, Burke DT, Mastrangelo CH, Burns MA (1997) Microfluidic flow control using selective hydrophobic patterning. In: Micromachining and microfabrication. International Society for Optics and Photonics pp 185–195Google Scholar
  24. 24.
    Zhao B, Moore JS, Beebe DJ (2001) Surface-directed liquid flow inside microchannels. Science 291(5506):1023–1026CrossRefGoogle Scholar
  25. 25.
    Chitnis G, Ding Z, Chang C-L, Savran CA, Ziaie B (2011) Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab Chip 11(6):1161–1165CrossRefGoogle Scholar
  26. 26.
    Kumar S, Cherukulappurath S, Johnson TW, Oh S-H (2014) Millimeter-sized suspended plasmonic nanohole arrays for surface-tension-driven flow-through SERS. Chem Mater 26(22):6523–6530CrossRefGoogle Scholar
  27. 27.
    Kumar S (2015) Directed transport-enabled improved biosensing and bioanalysis on plasmonic nanostructured substrates. University of MinnesotaGoogle Scholar
  28. 28.
    De Angelis F, Gentile F, Mecarini F, Das G, Moretti M, Candeloro P, Coluccio M, Cojoc G, Accardo A, Liberale C (2011) Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat Photonics 5(11):682–687CrossRefGoogle Scholar
  29. 29.
    Yang S, Dai X, Stogin BB, Wong T-S (2016) Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc Natl Acad Sci 113(2):268–273CrossRefGoogle Scholar
  30. 30.
    Kumar S, Johnson TW, Wood CK, Qu T, Wittenberg NJ, Otto LM, Shaver J, Long NJ, Victora RH, Edel JB, Oh S-H (2016) Template-stripped multifunctional wedge and pyramid arrays for magnetic nanofocusing and optical sensing. ACS Appl Mater Interfaces 8(14):9319–9326CrossRefGoogle Scholar
  31. 31.
    Grancharov S, Zeng H, Sun S, Wang S, O’Brien S, Murray C, Kirtley J, Held G (2005) Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor. J Phys Chem B 109(26):13030–13035CrossRefGoogle Scholar
  32. 32.
    Lou X, Qian J, Xiao Y, Viel L, Gerdon AE, Lagally ET, Atzberger P, Tarasow TM, Heeger AJ, Soh HT (2009) Micromagnetic selection of aptamers in microfluidic channels. Proc Natl Acad Sci USA 106(9):2989–2994CrossRefGoogle Scholar
  33. 33.
    Jun BH, Noh MS, Kim J, Kim G, Kang H, Kim MS, Seo YT, Baek J, Kim JH, Park J (2010) Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small 6(1):119–125CrossRefGoogle Scholar
  34. 34.
    Jun BH, Noh MS, Kim G, Kang H, Kim JH, Chung WJ, Kim MS, Kim YK, Cho MH, Jeong DH, Lee YS (2009) Protein separation and identification using magnetic beads encoded with surface-enhanced Raman spectroscopy. Anal Biochem 391(1):24–30CrossRefGoogle Scholar
  35. 35.
    Soelberg SD, Stevens RC, Limaye AP, Furlong CE (2009) Surface plasmon resonance detection using antibody-linked magnetic nanoparticles for analyte capture, purification, concentration, and signal amplification. Anal Chem 81(6):2357–2363CrossRefGoogle Scholar
  36. 36.
    Maier SA (2007) Plasmonics: fundamentals and applications. SpringerGoogle Scholar
  37. 37.
    Halas NJ, Lal S, Chang WS, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111(6):3913–3961CrossRefGoogle Scholar
  38. 38.
    Jackson JD (1998) Classical electrodynamics, 3rd edn. WileyGoogle Scholar
  39. 39.
    Stockman M (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93(13):137404CrossRefGoogle Scholar
  40. 40.
    Gramotnev D, Bozhevolnyi S (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4:83–91CrossRefGoogle Scholar
  41. 41.
    Van Bladel J (1983) Field singularities at the tip of a cone. Proc IEEE 71(7):901–902CrossRefGoogle Scholar
  42. 42.
    Tanase M, Felton EJ, Gray DS, Hultgren A, Chen CS, Reich DH (2005) Assembly of multicellular constructs and microarrays of cells using magnetic nanowires. Lab Chip 5(6):598–605CrossRefGoogle Scholar
  43. 43.
    Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6(8):974–980CrossRefGoogle Scholar
  44. 44.
    Chen G, Alberts C, Rodriguez W, Toner M (2010) Concentration and purification of human immunodeficiency virus type 1 virions by microfluidic separation of superparamagnetic nanoparticles. Anal Chem 82(2):723–728CrossRefGoogle Scholar
  45. 45.
    Nagpal P, Lindquist NC, Oh S-H, Norris DJ (2009) Ultrasmooth patterned metals for plasmonics and metamaterials. Science 325(5940):594–597CrossRefGoogle Scholar
  46. 46.
    Park JH, Nagpal P, McPeak KM, Lindquist NC, Oh S-H, Norris DJ (2013) Fabrication of smooth patterned structures of refractory metals, semiconductors, and oxides via template stripping. ACS Appl Mater Interfaces 5(19):9701–9708CrossRefGoogle Scholar
  47. 47.
    Pettinger B (2006) Tip-enhanced Raman spectroscopy (TERS). Surf Enhanc Raman Scatt Phys Appl 103:217–240CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Medical EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations