Nanopore Membranes for Separation and Sensing

A “Prosporous” Future
Part of the Integrated Analytical Systems book series (ANASYS)


During the last 20 years, the use of nanopore membranes to separate molecules depending on their size, charge or other characteristics, have increased in interest. These more ordered and defined nanopores have several advantages compared to traditional ultrafiltration membranes and provide possibilities to combine with, e.g., both electrical and optical sensing schemes. In this chapter, we discuss some of the more common nanopore membranes and how they can be used both for separation and sensing of analytes.


  1. 1.
    Yu S, Lee SB, Kang M, Martin CR (2001) Size-based protein separations in poly(ethylene glycol)-derivatized gold nanotubule membranes. Nano Lett 1(9):495–498CrossRefGoogle Scholar
  2. 2.
    Lee SB, Mitchell DT, Trofin L, Nevanen TK, Söderlund H, Martin CR (2002) Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 296(5576):2198–2200CrossRefGoogle Scholar
  3. 3.
    Jirage KB, Hulteen JC, Martin CR (1997) Nanotubule-based molecular-filtration membranes. Science 278(5338):655–658CrossRefGoogle Scholar
  4. 4.
    Wirtz M, Parker M, Kobayashi Y, Martin CR (2002) Molecular sieving and sensing with gold nanotube membranes. Chem Record 2(4):259–267CrossRefGoogle Scholar
  5. 5.
    de Jong J, Lammertink RGH, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6(9):1125–1139CrossRefGoogle Scholar
  6. 6.
    Han J, Fu J, Schoch RB (2008) Molecular sieving using nanofilters: past, present and future. Lab Chip 8(1):23–33CrossRefGoogle Scholar
  7. 7.
    Huang M, Galarreta BC, Cetin AE, Altug H (2013) Actively transporting virus like analytes with optofluidics for rapid and ultrasensitive biodetection. Lab Chip 13(24):4841–4847CrossRefGoogle Scholar
  8. 8.
    Deen WM (1987) Hindered transport of large molecules in liquid-filled pores. AIChE J 33(9):1409–1425CrossRefGoogle Scholar
  9. 9.
    Paine PL, Scherr P (1975) Drag coefficients for the movement of rigid spheres through liquid-filled cylindrical pores. Biophys J 15(10):1087–1091CrossRefGoogle Scholar
  10. 10.
    Bungay PM, Brenner H (1973) The motion of a closely-fitting sphere in a fluid-filled tube. Int J Multiph Flow 1(1):25–56CrossRefGoogle Scholar
  11. 11.
    Renkin EM (1954) Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol 38(2):225–243Google Scholar
  12. 12.
    Brenner H, Gaydos LJ (1977) The constrained brownian movement of spherical particles in cylindrical pores of comparable radius. J Colloid Interface Sci 58(2):312–356CrossRefGoogle Scholar
  13. 13.
    Dechadilok P, Deen WM (2006) Hindrance factors for diffusion and convection in pores. Ind Eng Chem Res 45(21):6953–6959CrossRefGoogle Scholar
  14. 14.
    Snyder JL, Clark A Jr, Fang DZ, Gaborski TR, Striemer CC, Fauchet PM, McGrath JL (2011) An experimental and theoretical analysis of molecular separations by diffusion through ultrathin nanoporous membranes. J Membr Sci 369(1–2):119–129CrossRefGoogle Scholar
  15. 15.
    Bean CP, Doyle MV, Entine G (1970) Etching of submicron pores in irradiated mica. J Appl Phys 41(4):1454–1459CrossRefGoogle Scholar
  16. 16.
    Fleischer RL, Alter HW, Furman SC, Price PB, Walker RM (1972) Particle track etching. Divers Technol Range Virus Identif Uranium Explor 178(4058):255–263Google Scholar
  17. 17.
    Quinn JA, Anderson JL, Ho WS, Petzny WJ (1972) Model pores of molecular dimension: the preparation and characterization of track-etched membranes. Biophys J 12(8):990–1007CrossRefGoogle Scholar
  18. 18.
    Apel P (2001) Track etching technique in membrane technology. Radiat Meas 34(1–6):559–566CrossRefGoogle Scholar
  19. 19.
    Apel PY, Korchev YE, Siwy Z, Spohr R, Yoshida M (2001) Diode-like single-ion track membrane prepared by electro-stopping. Nucl Instrum Methods Phys Res Sect B 184(3):337–346CrossRefGoogle Scholar
  20. 20.
    Stroeve P, Ileri N Biotechnical and other applications of nanoporous membranes. In: Trends in biotechnology 29(6):259–266Google Scholar
  21. 21.
    Diggle JW, Downie TC, Goulding CW (1969) Anodic oxide films on aluminum. Chem Rev 69(3):365–405CrossRefGoogle Scholar
  22. 22.
    Keller F, Hunter MS, Robinson DL (1953) Structural features of oxide coatings on aluminum. J Electrochem Soc 100(9):411–419CrossRefGoogle Scholar
  23. 23.
    Wood GC, O’Sullivan JP, Vaszko B (1968) The direct observation of barrier layers in porous anodic oxide films. J Electrochem Soc 115(6):618–620CrossRefGoogle Scholar
  24. 24.
    Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268(5216):1466–1468CrossRefGoogle Scholar
  25. 25.
    Lee W, Ji R, Gosele U, Nielsch K (2006) Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat Mater 5(9):741–747CrossRefGoogle Scholar
  26. 26.
    Masuda H (2005) Highly ordered nanohole arrays in anodic porous alumina. In: Ordered porous nanostructures and applications. Springer, US, Boston, MA, pp 37–55Google Scholar
  27. 27.
    Hideki M, Masahiro S (1996) Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn J Appl Phys 35(1B):L126Google Scholar
  28. 28.
    Masuda H, Yamada H, Satoh M, Asoh H, Nakao M, Tamamura T (1997) Highly ordered nanochannel-array architecture in anodic alumina. Appl Phys Lett 71(19):2770–2772CrossRefGoogle Scholar
  29. 29.
    Asoh H, Nishio K, Nakao M, Tamamura T, Masuda H (2001) Conditions for fabrication of ideally ordered anodic porous alumina using pretextured Al. J Electrochem Soc 148(4):B152–B156CrossRefGoogle Scholar
  30. 30.
    Lee W, Schwirn K, Steinhart M, Pippel E, Scholz R, Gosele U (2008) Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium. Nat Nano 3(4):234–239CrossRefGoogle Scholar
  31. 31.
    Chen W, Wu J-S, Xia X-H (2008) Porous anodic alumina with continuously manipulated pore/cell size. ACS Nano 2(5):959–965CrossRefGoogle Scholar
  32. 32.
    Robatjazi H, Bahauddin SM, Macfarlan LH, Fu S, Thomann I (2016) Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication. Chem Mater 28(13):4546–4553CrossRefGoogle Scholar
  33. 33.
    Masuda H, Hasegwa F, Ono S (1997) Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. J Electrochem Soc 144(5):L127–L130CrossRefGoogle Scholar
  34. 34.
    Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268(5211):700–702CrossRefGoogle Scholar
  35. 35.
    Menon VP, Martin CR (1995) Fabrication and evaluation of nanoelectrode ensembles. Anal Chem 67(13):1920–1928CrossRefGoogle Scholar
  36. 36.
    Tong HD, Jansen HV, Gadgil VJ, Bostan CG, Berenschot E, van Rijn CJM, Elwenspoek M (2004) Silicon nitride nanosieve membrane. Nano Lett 4(2):283–287CrossRefGoogle Scholar
  37. 37.
    Jonsson MP, Dahlin AB, Feuz L, Petronis S, Höök F (2010) Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal Chem 82(5):2087–2094CrossRefGoogle Scholar
  38. 38.
    Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto EM, Brolo AG, Gordon R, Sinton D (2009) Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 81(11):4308–4311CrossRefGoogle Scholar
  39. 39.
    Escobedo C, Brolo AG, Gordon R, Sinton D (2012) Optofluidic concentration: plasmonic nanostructure as concentrator and sensor. Nano Lett 12(3):1592–1596CrossRefGoogle Scholar
  40. 40.
    Vlassiouk I, Apel PY, Dmitriev SN, Healy K, Siwy ZS (2009) Versatile ultrathin nanoporous silicon nitride membranes. Proc Natl Acad Sci 106(50):21039–21044CrossRefGoogle Scholar
  41. 41.
    Yanik AA, Huang M, Artar A, Chang TY, Altug H (2010) Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl Phys Lett 96(2)Google Scholar
  42. 42.
    Yanik AA, Huang M, Kamohara O, Artar A, Geisbert TW, Connor JH, Altug H (2010) An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett 10(12):4962–4969CrossRefGoogle Scholar
  43. 43.
    Yanik AA, Cetin AE, Huang M, Artar A, Mousavi SH, Khanikaev A, Connor JH, Shvets G, Altug H (2011) Seeing protein monolayers with naked eye through plasmonic Fano resonances. P Natl Acad Sci USA 108(29):11784–11789CrossRefGoogle Scholar
  44. 44.
    Kumar S, Cherukulappurath S, Johnson TW, Oh S-H (2014) Millimeter-sized suspended plasmonic nanohole arrays for surface-tension-driven flow-through SERS. Chem Mater 26(22):6523–6530CrossRefGoogle Scholar
  45. 45.
    Dahlin AB, Mapar M, Xiong K, Mazzotta F, Höök F, Sannomiya T (2014) Plasmonic nanopores in metal-insulator-metal films. Adv Opt Mat n/a–n/aGoogle Scholar
  46. 46.
    Stein K, van Henk W, van Cees R, Wietze N, Gijs K, Miko E (2001) Fabrication of microsieves with sub-micron pore size by laser interference lithography. J Micromech Microeng 11(1):33CrossRefGoogle Scholar
  47. 47.
    van Rijn CJM (2006) Laser interference as a lithographic nanopatterning tool. MOEMS 5(1), 011012–011012-6Google Scholar
  48. 48.
    Striemer CC, Gaborski TR, McGrath JL, Fauchet PM (2007) Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445(7129):749–753CrossRefGoogle Scholar
  49. 49.
    Emilsson G, Schoch RL, Feuz L, Höök F, Lim RYH, Dahlin AB (2015) Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to. ACS Appl Mat InterfacesGoogle Scholar
  50. 50.
    van Reis R, Brake JM, Charkoudian J, Burns DB, Zydney AL (1999) High-performance tangential flow filtration using charged membranes. J Membr Sci 159(1–2):133–142CrossRefGoogle Scholar
  51. 51.
    Asatekin A, Kang S, Elimelech M, Mayes AM (2007) Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. J Membr Sci 298(1–2):136–146CrossRefGoogle Scholar
  52. 52.
    Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452(7185):301–310CrossRefGoogle Scholar
  53. 53.
    Caspi Y, Zbaida D, Cohen H, Elbaum M (2008) Synthetic mimic of selective transport through the nuclear pore complex. Nano Lett 8(11):3728–3734CrossRefGoogle Scholar
  54. 54.
    Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2):101–113CrossRefGoogle Scholar
  55. 55.
    Zdyrko B, Luzinov I (2011) Polymer brushes by the “grafting to” method. Macromol Rapid Commun 32(12):859–869CrossRefGoogle Scholar
  56. 56.
    Edmondson S, Osborne VL, Huck WTS (2004) Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33(1):14–22CrossRefGoogle Scholar
  57. 57.
    Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H-A (2009) Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 109(11):5437–5527CrossRefGoogle Scholar
  58. 58.
    Tokarev I, Minko S (2009) Multiresponsive, hierarchically structured membranes: new, challenging, biomimetic materials for biosensors, controlled release, biochemical gates, and nanoreactors. Adv Mater 21(2):241–247CrossRefGoogle Scholar
  59. 59.
    Bruening ML, Dotzauer DM, Jain P, Ouyang L, Baker GL (2008) Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir 24(15):7663–7673CrossRefGoogle Scholar
  60. 60.
    Tokarev I, Minko S (2010) Stimuli-responsive porous hydrogels at interfaces for molecular filtration, separation, controlled release, and gating in capsules and membranes. Adv Mater 22(31):3446–3462CrossRefGoogle Scholar
  61. 61.
    Zhang H, Hou X, Zeng L, Yang F, Li L, Yan D, Tian Y, Jiang L (2013) Bioinspired artificial single ion pump. J Am Chem Soc 135(43):16102–16110CrossRefGoogle Scholar
  62. 62.
    Zhang Z, Kong X-Y, Xiao K, Liu Q, Xie G, Li P, Ma J, Tian Y, Wen L, Jiang L (2015) Engineered asymmetric heterogeneous membrane: a concentration-gradient-driven energy harvesting device. J Am Chem Soc 137(46):14765–14772CrossRefGoogle Scholar
  63. 63.
    Liu Q, Xiao K, Wen L, Lu H, Liu Y, Kong X-Y, Xie G, Zhang Z, Bo Z, Jiang L (2015) Engineered ionic gates for ion conduction based on sodium and potassium activated nanochannels. J Am Chem Soc 137(37):11976–11983CrossRefGoogle Scholar
  64. 64.
    Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett 9(7):2788–2793CrossRefGoogle Scholar
  65. 65.
    Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010) Proton-regulated rectified ionic transport through solid-state conical nanopores modified with phosphate-bearing polymer brushes. Chem Commun 46(11):1908–1910CrossRefGoogle Scholar
  66. 66.
    Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. Small 5(11):1287–1291CrossRefGoogle Scholar
  67. 67.
    Elbert J, Krohm F, Rüttiger C, Kienle S, Didzoleit H, Balzer BN, Hugel T, Stühn B, Gallei M, Brunsen A (2014) Polymer-modified mesoporous silica thin films for redox-mediated selective membrane gating. Adv Func Mater 24(11):1591–1601CrossRefGoogle Scholar
  68. 68.
    Buchsbaum S, Nguyen G, Howorka S, Siwy ZS (2014) DNA-modified polymer pores allow ph- and voltage-gated control of channel flux. J Am Chem SocGoogle Scholar
  69. 69.
    de Groot GW, Santonicola MG, Sugihara K, Zambelli T, Reimhult E, Vörös J, Vancso GJ (2013) Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability. ACS Appl Mater Interfaces 5(4):1400–1407CrossRefGoogle Scholar
  70. 70.
    Ito Y, Ochiai Y, Park YS, Imanishi Y (1997) pH-sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane. J Am Chem Soc 119(7):1619–1623CrossRefGoogle Scholar
  71. 71.
    Ito Y, Park YS, Imanishi Y (1997) Visualization of critical pH-controlled gating of a porous membrane grafted with polyelectrolyte brushes. J Am Chem Soc 119(11):2739–2740CrossRefGoogle Scholar
  72. 72.
    Park YS, Ito Y, Imanishi Y (1998) Permeation control through porous membranes immobilized with thermosensitive polymer. Langmuir 14(4):910–914CrossRefGoogle Scholar
  73. 73.
    Ito Y, Nishi S, Park YS, Imanishi Y (1997) Oxidoreduction-sensitive control of water permeation through a polymer brushes-grafted porous membrane. Macromolecules 30(19):5856–5859CrossRefGoogle Scholar
  74. 74.
    Park YS, Ito Y, Imanishi Y (1998) Photocontrolled gating by polymer brushes grafted on porous glass filter. Macromolecules 31(8):2606–2610CrossRefGoogle Scholar
  75. 75.
    Liu Dunphy DR, Atanassov P, Bunge SD, Chen Z, López GP, Boyle TJ, Brinker CJ (2004) Photoregulation of mass transport through a photoresponsive azobenzene-modified nanoporous membrane. Nano Lett 4(4), 551–554Google Scholar
  76. 76.
    Lokuge I, Wang X, Bohn PW (2006) Temperature-controlled flow switching in nanocapillary array membranes mediated by poly(n-isopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization†. Langmuir 23(1):305–311CrossRefGoogle Scholar
  77. 77.
    Huber DL, Manginell RP, Samara MA, Kim B-I, Bunker BC (2003) programmed adsorption and release of proteins in a microfluidic device. Science 301(5631):352–354CrossRefGoogle Scholar
  78. 78.
    Yu Q, Shivapooja P, Johnson LM, Tizazu G, Leggett GJ, Lopez GP (2013) Nanopatterned polymer brushes as switchable bioactive interfaces. Nanoscale 5(9):3632–3637CrossRefGoogle Scholar
  79. 79.
    Liu H, Liu X, Meng J, Zhang P, Yang G, Su B, Sun K, Chen L, Han D, Wang S, Jiang L (2013) Hydrophobic interaction-mediated capture and release of cancer cells on thermoresponsive nanostructured surfaces. Adv Mater 25(6):922–927CrossRefGoogle Scholar
  80. 80.
    Liu Z, Wang W, Xie R, Ju X-J, Chu L-Y (2016) Stimuli-responsive smart gating membranes. Chem Soc Rev 45(3):460–475CrossRefGoogle Scholar
  81. 81.
    Kohli P, Harrell CC, Cao Z, Gasparac R, Tan W, Martin CR (2004) DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305(5686):984–986CrossRefGoogle Scholar
  82. 82.
    Yu S, Lee SB, Martin CR (2003) Electrophoretic protein transport in gold nanotube membranes. Anal Chem 75(6):1239–1244CrossRefGoogle Scholar
  83. 83.
    Osmanbeyoglu HU, Hur TB, Kim HK (2009) Thin alumina nanoporous membranes for similar size biomolecule separation. J Membr Sci 343(1–2):1–6CrossRefGoogle Scholar
  84. 84.
    Ku J-R, Stroeve P (2004) Protein diffusion in charged nanotubes: “On–Off” behavior of molecular transport. Langmuir 20(5):2030–2032CrossRefGoogle Scholar
  85. 85.
    Chun K-Y, Stroeve P (2002) Protein transport in nanoporous membranes modified with self-assembled monolayers of functionalized thiols. Langmuir 18(12):4653–4658CrossRefGoogle Scholar
  86. 86.
    Kuiper S, van Rijn CJM, Nijdam W, Elwenspoek MC (1998) Development and applications of very high flux microfiltration membranes. J Membr Sci 150(1):1–8CrossRefGoogle Scholar
  87. 87.
    Gaborski TR, Snyder JL, Striemer CC, Fang DZ, Hoffman M, Fauchet PM, McGrath JL (2010) High-performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes. ACS Nano 4(11):6973–6981CrossRefGoogle Scholar
  88. 88.
    Martin CR, Siwy Z (2004) Molecular filters: pores within pores. Nat Mater 3(5):284–285CrossRefGoogle Scholar
  89. 89.
    Bayley H, Martin CR (2000) Resistive-pulse sensing from microbes to molecules. Chem Rev 100(7):2575–2594CrossRefGoogle Scholar
  90. 90.
    Kobayashi Y, Martin CR (1999) Highly sensitive methods for electroanalytical chemistry based on nanotubule membranes. Anal Chem 71(17):3665–3672CrossRefGoogle Scholar
  91. 91.
    Gyurcsányi RE (2008) Chemically-modified nanopores for sensing. TrAC Trends Anal Chem 27(7):627–639CrossRefGoogle Scholar
  92. 92.
    Reimhult E, Höök F (2015) Design of surface modifications for nanoscale sensor applications. Sensors 15(1):1635–1675CrossRefGoogle Scholar
  93. 93.
    Wang X, Smirnov S (2009) Label-free DNA sensor based on surface charge modulated ionic conductance. ACS Nano 3(4):1004–1010CrossRefGoogle Scholar
  94. 94.
    Li S-J, Li J, Wang K, Wang C, Xu J-J, Chen H-Y, Xia X-H, Huo Q (2010) A nanochannel array-based electrochemical device for quantitative label-free DNA analysis. ACS Nano 4(11):6417–6424CrossRefGoogle Scholar
  95. 95.
    Dahlin AB (2015) Sensing applications based on plasmonic nanopores: the hole story. AnalystGoogle Scholar
  96. 96.
    Junesch J, Sannomiya T (2014) Ultrathin suspended nanopores with surface plasmon resonance fabricated by combined colloidal lithography and film transfer. ACS Appl Mater InterGoogle Scholar
  97. 97.
    Escobedo C, Brolo AG, Gordon R, Sinton D (2010) Flow-through vs flow-over: analysis of transport and binding in nanohole array plasmonic biosensors. Anal Chem 82(24):10015–10020CrossRefGoogle Scholar
  98. 98.
    Zhao Y, Gaur G, Retterer ST, Laibinis PE, Weiss SM (2016) Flow-through porous silicon membranes for real-time label-free biosensing. Anal Chem 88(22):10940–10948CrossRefGoogle Scholar
  99. 99.
    Xiong K, Emilsson G, Dahlin AB (2016) Biosensing using plasmonic nanohole arrays with small, homogenous and tunable aperture diameters. AnalystGoogle Scholar
  100. 100.
    Yamaguchi A, Uejo F, Yoda T, Uchida T, Tanamura Y, Yamashita T, Teramae N (2004) Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane. Nat Mater 3(5):337–341CrossRefGoogle Scholar
  101. 101.
    Breault-Turcot J, Masson J-F (2015) Microdialysis SPR: diffusion-gated sensing in blood. Chem SciGoogle Scholar
  102. 102.
    Jágerszki G, Gyurcsányi RE, Höfler L, Pretsch E (2007) Hybridization-modulated ion fluxes through peptide-nucleic-acid- functionalized gold nanotubes. a new approach to quantitative label-free dna analysis. Nano Lett 7(6):1609–1612CrossRefGoogle Scholar
  103. 103.
    Tsang M-K, Ye W, Wang G, Li J, Yang M, Hao J (2016) Ultrasensitive detection of ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano 10(1):598–605CrossRefGoogle Scholar
  104. 104.
    Li F, Guijt RM, Breadmore MC (2016) Nanoporous membranes for microfluidic concentration prior to electrophoretic separation of proteins in urine. Anal Chem 88(16):8257–8263CrossRefGoogle Scholar
  105. 105.
    Hereijgers J, Desmet G, Breugelmans T, De Malsche W (2015) Strategies to integrate porous layers in microfluidic devices. Microelectron Eng 132:1–13CrossRefGoogle Scholar
  106. 106.
    Escobedo C (2013) On-chip nanohole array based sensing: a review. Lab Chip 13(13):2445–2463CrossRefGoogle Scholar
  107. 107.
    Chen X, Shen J (2016) Review of membranes in microfluidics. J Chem Technol Biotechnol n/a–n/aGoogle Scholar
  108. 108.
    Barik A, Otto LM, Yoo D, Jose J, Johnson TW, Oh S-H (2014) Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays. Nano Lett 14(4):2006–2012CrossRefGoogle Scholar
  109. 109.
    Snyder JL, Getpreecharsawas J, Fang DZ, Gaborski TR, Striemer CC, Fauchet PM, Borkholder DA, McGrath JL (2013) High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes. Proc Natl Acad Sci 110(46):18425–18430CrossRefGoogle Scholar
  110. 110.
    Wu X, Ramiah Rajasekaran P, Martin CR (2016) An alternating current electroosmotic pump based on conical nanopore membranes. ACS Nano 10(4):4637–4643CrossRefGoogle Scholar
  111. 111.
    Tagliazucchi M, Szleifer I (2015) Transport mechanisms in nanopores and nanochannels: can we mimic nature? Mater Today 18(3):131–142CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborgSweden

Personalised recommendations