A Generic Construction of Secure-Channel Free Searchable Encryption with Multiple Keywords

  • Keita Emura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10394)


In public key encryption with keyword search (PEKS), a secure channel must be required in order to send trapdoors to the server, whereas in secure-channel free PEKS (SCF-PEKS), no such secure channel is required. As an extension of SCF-PEKS, Wang et al. (NSS 2016) proposed SCF-PEKS with multiple keywords (SCF-MPEKS). In this paper, we further extend the Wang et al. result by proposing the generic construction of SCF-MPEKS from hidden vector encryption (HVE), tag-based encryption, and a one-time signature. Our generic construction provides adaptive security, where the test queries are allowed in the security model, and does not require random oracles. On the other hand, the Wang et al. scheme did not consider adaptive security, and the scheme is secure in the random oracle model. We give an instantiation of our generic construction by employing the Park-Lee-Susilo-Lee HVE scheme (Information Sciences 2013). This is the first adaptive secure SCF-MPEKS scheme in the standard model.


  1. 1.
    Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: consistency properties, relation to anonymous IBE, and extensions. J. Cryptology 21(3), 350–391 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-11799-2_28 CrossRefGoogle Scholar
  3. 3.
    Baek, J., Safavi-Naini, R., Susilo, W.: On the integration of public key data encryption and public key encryption with keyword search. In: Katsikas, S.K., López, J., Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 217–232. Springer, Heidelberg (2006). doi: 10.1007/11836810_16 CrossRefGoogle Scholar
  4. 4.
    Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with keyword search revisited. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008. LNCS, vol. 5072, pp. 1249–1259. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69839-5_96 CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Boldyreva, A., Staddon, J.: Randomness re-use in multi-recipient encryption schemeas. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 85–99. Springer, Heidelberg (2003). doi: 10.1007/3-540-36288-6_7 CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Rogaway, P.: Collision-resistant hashing: towards making UOWHFs practical. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 470–484. Springer, Heidelberg (1997). doi: 10.1007/BFb0052256 CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24676-3_30 CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-70936-7_29 CrossRefGoogle Scholar
  9. 9.
    Byun, J.W., Rhee, H.S., Park, H.-A., Lee, D.H.: Off-line keyword guessing attacks on recent keyword search schemes over encrypted data. In: Jonker, W., Petković, M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 75–83. Springer, Heidelberg (2006). doi: 10.1007/11844662_6 CrossRefGoogle Scholar
  10. 10.
    Caro, A., Iovino, V., Persiano, G.: Fully secure hidden vector encryption. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 102–121. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36334-4_7 CrossRefGoogle Scholar
  11. 11.
    Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X.: Dual-server public-key encryption with keyword search for secure cloud storage. IEEE Trans. Inf. Forensics Secur. 11(4), 789–798 (2016)Google Scholar
  12. 12.
    Chen, Y., Zhang, J., Lin, D., Zhang, Z.: Generic constructions of integrated PKE and PEKS. Des. Codes Crypt. 78(2), 493–526 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Emura, K., Miyaji, A., Omote, K.: Adaptive secure-channel free public-key encryption with keyword search implies timed release encryption. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol. 7001, pp. 102–118. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-24861-0_8 CrossRefGoogle Scholar
  14. 14.
    Emura, K., Miyaji, A., Rahman, M.S., Omote, K.: Generic constructions of secure-channel free searchable encryption with adaptive security. Secur. Commun. Netw. 8(8), 1547–1560 (2015). Cryptology ePrint Archive Report 2013/321CrossRefGoogle Scholar
  15. 15.
    Emura, K., Rahman, M.S.: Constructing secure-channel free searchable encryption from anonymous IBE with partitioned ciphertext structure. In: SECRYPT, pp. 84–93 (2012)Google Scholar
  16. 16.
    Fang, L., Susilo, W., Ge, C., Wang, J.: A secure channel free public key encryption with keyword search scheme without random oracle. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 248–258. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10433-6_16 CrossRefGoogle Scholar
  17. 17.
    Fang, L., Susilo, W., Ge, C., Wang, J.: Public key encryption with keyword search secure against keyword guessing attacks without random oracle. Inf. Sci. 238, 221–241 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gu, C., Zhu, Y.: New efficient searchable encryption schemes from bilinear pairings. Int. J. Netw. Secur. 10(1), 25–31 (2010)MathSciNetGoogle Scholar
  19. 19.
    Gu, C., Zhu, Y., Pan, H.: Efficient public key encryption with keyword search schemes from pairings. In: Pei, D., Yung, M., Lin, D., Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 372–383. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-79499-8_29 CrossRefGoogle Scholar
  20. 20.
    Guo, L., Yau, W.: Efficient secure-channel free public key encryption with keyword search for EMRs in cloud storage. J. Med. Syst. 39(2), 11 (2015)CrossRefGoogle Scholar
  21. 21.
    Hattori, M., Hirano, T., Ito, T., Matsuda, N., Mori, T., Sakai, Y., Ohta, K.: Ciphertext-policy delegatable hidden vector encryption and its application to searchable encryption in multi-user setting. In: Chen, L. (ed.) IMACC 2011. LNCS, vol. 7089, pp. 190–209. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25516-8_12 CrossRefGoogle Scholar
  22. 22.
    Hwang, Y.H., Lee, P.J.: Public key encryption with conjunctive keyword search and its extension to a multi-user system. In: Takagi, T., Okamoto, E., Okamoto, T., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 2–22. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73489-5_2 CrossRefGoogle Scholar
  23. 23.
    Iovino, V., Persiano, G.: Hidden-vector encryption with groups of prime order. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 75–88. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85538-5_5 CrossRefGoogle Scholar
  24. 24.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. J. Crypt. 26(2), 191–224 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Khader, D.: Public key encryption with keyword search based on K-Resilient IBE. In: Gervasi, O., Gavrilova, M.L. (eds.) ICCSA 2007. LNCS, vol. 4707, pp. 1086–1095. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74484-9_95 CrossRefGoogle Scholar
  26. 26.
    Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006). doi: 10.1007/11681878_30 CrossRefGoogle Scholar
  27. 27.
    Kurosawa, K.: Multi-recipient public-key encryption with shortened ciphertext. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 48–63. Springer, Heidelberg (2002). doi: 10.1007/3-540-45664-3_4 CrossRefGoogle Scholar
  28. 28.
    Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-31815-6_7 CrossRefGoogle Scholar
  29. 29.
    Park, J.H.: Efficient hidden vector encryption for conjunctive queries on encrypted data. IEEE Trans. Knowl. Data Eng. 23(10), 1483–1497 (2011)CrossRefGoogle Scholar
  30. 30.
    Park, J.H., Lee, D.H.: A hidden vector encryption scheme with constant-size tokens and pairing computations. IEICE Trans. 93–A(9), 1620–1631 (2010)CrossRefGoogle Scholar
  31. 31.
    Park, J.H., Lee, K., Susilo, W., Lee, D.H.: Fully secure hidden vector encryption under standard assumptions. Inf. Sci. 232, 188–207 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Phuong, T.V.X., Yang, G., Susilo, W.: Efficient hidden vector encryption with constant-size ciphertext. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 472–487. Springer, Cham (2014). doi: 10.1007/978-3-319-11203-9_27 Google Scholar
  33. 33.
    Qiu, S., Liu, J., Shi, Y., Zhang, R.: Hidden policy ciphertext-policy attribute-based encryption with keyword search against keyword guessing attack. Sci. China Inf. Sci. 60(5), 052105:1–052105:12 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Rhee, H.S., Park, J.H., Lee, D.H.: Generic construction of designated tester public-key encryption with keyword search. Inf. Sci. 205, 93–109 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Trapdoor security in a searchable public-key encryption scheme with a designated tester. J. Syst. Softw. 83(5), 763–771 (2010)CrossRefGoogle Scholar
  36. 36.
    Rhee, H.S., Susilo, W., Kim, H.: Secure searchable public key encryption scheme against keyword guessing attacks. IEICE Electron. Expr. 6(5), 237–243 (2009)CrossRefGoogle Scholar
  37. 37.
    Sedghi, S., Liesdonk, P., Nikova, S., Hartel, P., Jonker, W.: Searching keywords with wildcards on encrypted data. In: Garay, J.A., Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 138–153. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15317-4_10 CrossRefGoogle Scholar
  38. 38.
    Shi, E., Waters, B.: Delegating capabilities in predicate encryption systems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 560–578. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-70583-3_46 CrossRefGoogle Scholar
  39. 39.
    Wang, T., Au, M.H., Wu, W.: An efficient secure channel free searchable encryption scheme with multiple keywords. In: Chen, J., Piuri, V., Su, C., Yung, M. (eds.) NSS 2016. LNCS, vol. 9955, pp. 251–265. Springer, Cham (2016). doi: 10.1007/978-3-319-46298-1_17 CrossRefGoogle Scholar
  40. 40.
    Wee, H.: Public key encryption against related key attacks. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 262–279. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30057-8_16 CrossRefGoogle Scholar
  41. 41.
    Yang, Y., Ma, M.: Conjunctive keyword search with designated tester and timing enabled proxy re-encryption function for E-health clouds. IEEE Trans. Inf. Forensics Secur. 11(4), 746–759 (2016)Google Scholar
  42. 42.
    Zhang, R., Imai, H.: Combining public key encryption with keyword search and public key encryption. IEICE Trans. 92–D(5), 888–896 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.National Institute of Information and Communications Technology (NICT)TokyoJapan

Personalised recommendations