Fast and Easy Blind Deblurring Using an Inverse Filter and PROBE

  • Naftali Zon
  • Rana Hanocka
  • Nahum KiryatiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10425)


PROBE (Progressive Removal of Blur Residual) is a recursive framework for blind deblurring. PROBE is neither a functional minimization approach, nor an open-loop sequential method where blur kernel estimation is followed by non-blind deblurring. PROBE is a feedback scheme, deriving its unique strength from the closed-loop architecture. Thus, with the rudimentary modified inverse filter at its core, PROBE’s performance meets or exceeds the state of the art, both visually and quantitatively. Remarkably, PROBE lends itself to analysis that reveals its convergence properties.


  1. 1.
    Bar, L., Sochen, N., Kiryati, N.: Semi-blind image restoration via mumford-shah regularization. IEEE Trans. Image Process. 15(2), 483–493 (2006)CrossRefGoogle Scholar
  2. 2.
    Chan, T.F., Wong, C.: Total variation blind deconvolution. IEEE Trans. Image Process. 7, 370–375 (1998)CrossRefGoogle Scholar
  3. 3.
    Cho, S., Lee, S.: Fast motion deblurring. ACM Trans. Graph. (SIGGRAPH ASIA 2009) 28(5), Article no. 145 (2009)Google Scholar
  4. 4.
    Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Trans. Graph. 25, 787–794 (2006). SIGGRAPH 2006 Conference Proceedings, Boston, MACrossRefGoogle Scholar
  5. 5.
    Hanocka, R., Kiryati, N.: Progressive blind deconvolution. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9257, pp. 313–325. Springer, Cham (2015). doi: 10.1007/978-3-319-23117-4_27 CrossRefGoogle Scholar
  6. 6.
    Komodakis, N., Paragios, N.: MRF-based blind image deconvolution. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7726, pp. 361–374. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37431-9_28 CrossRefGoogle Scholar
  7. 7.
    Kotera, J., Šroubek, F., Milanfar, P.: Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013. LNCS, vol. 8048, pp. 59–66. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40246-3_8 CrossRefGoogle Scholar
  8. 8.
    Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors. In: Neural Information Processing Systems NIPS (2009)Google Scholar
  9. 9.
    Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: Computer Vision and Pattern Recognition (CVPR) (2011)Google Scholar
  10. 10.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: Computer Vision and Pattern Recognition (CVPR), pp. 1964–1971 (2009)Google Scholar
  11. 11.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2657–2664 (2011)Google Scholar
  12. 12.
    Michaeli, T., Irani, M.: Nonparametric blind super-resolution. In: IEEE International Conference on Computer Vision (ICCV), pp. 945–952 (2013)Google Scholar
  13. 13.
    Osher, S., Rudin, L.I.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27(4), 919–940 (1990)CrossRefzbMATHGoogle Scholar
  14. 14.
    Perrone, D., Favaro, P.: Total variation blind deconvolution: the devil is in the details. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)Google Scholar
  15. 15.
    Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. (SIGGRAPH) 27, 73 (2008)Google Scholar
  16. 16.
    Shao, W.Z., Li, H.B., Elad, M.: Bi-\(l_0\)-\(l_2\)-norm regularization for blind motion deblurring. J. Vis. Commun. Image Represent. 33, 42–59 (2015)CrossRefGoogle Scholar
  17. 17.
    Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15549-9_12 CrossRefGoogle Scholar
  18. 18.
    You, Y.L., Kaveh, M.: A regularization approach to joint blur identification and image restoration. IEEE Trans. Image Process. 5, 416–428 (1996)CrossRefGoogle Scholar
  19. 19.
    Zhou, Y., Komodakis, N.: A MAP-estimation framework for blind deblurring using high-level edge priors. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 142–157. Springer, Cham (2014). doi: 10.1007/978-3-319-10605-2_10 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Electrical EngineeringTel Aviv UniversityTel AvivIsrael

Personalised recommendations