Advertisement

Indexing of Single and Multi-instance Iris Data Based on LSH-Forest and Rotation Invariant Representation

  • Naser Damer
  • Philipp Terhörst
  • Andreas Braun
  • Arjan Kuijper
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10425)

Abstract

Indexing of iris data is required to facilitate fast search in large-scale biometric systems. Previous works addressing this issue were challenged by the tradeoffs between accuracy, computational efficacy, storage costs, and maintainability. This work presents an iris indexing approach based on rotation invariant iris representation and LSH-Forest to produce an accurate and easily maintainable indexing structure. The complexity of insertion or deletion in the proposed method is limited to the same logarithmic complexity of a query and the required storage grows linearly with the database size. The proposed approach was extended into a multi-instance iris indexing scheme resulting in a clear performance improvement. Single iris indexing scored a hit rate of 99.7% at a 0.1% penetration rate while multi-instance indexing scored a 99.98% hit rate at the same penetration rate. The evaluation of the proposed approach was conducted on a large database of 50k references and 50k probes of the left and the right irises. The advantage of the proposed solution was put into prospective by comparing the achieved performance to the reported results in previous works.

References

  1. 1.
    Afonso, L.C.S., Papa, J.P., Marana, A.N., Poursaberi, A., Yanushkevich, S.N.: A fast large scale iris database classification with optimum-path forest technique: a case study. In: The 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012, pp. 1–5 (2012). http://dx.doi.org/10.1109/IJCNN.2012.6252660
  2. 2.
    Bawa, M., Condie, T., Ganesan, P.: LSH forest: self-tuning indexes for similarity search. In: Proceedings of the 14th International Conference on World Wide Web, WWW 2005, pp. 651–660. ACM, New York (2005). http://doi.acm.org/10.1145/1060745.1060840
  3. 3.
    Cappelli, R., Ferrara, M., Maltoni, D.: Fingerprint indexing based on minutia cylinder-code. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 1051–1057 (2011)CrossRefGoogle Scholar
  4. 4.
    Cappelli, R., Ferrara, M., Maltoni, D.: Minutia cylinder-code: a new representation and matching technique for fingerprint recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32, 2128–2141 (2010)CrossRefGoogle Scholar
  5. 5.
    Cappelli, R., Ferrara, M., Maltoni, D., Tistarelli, M.: MCC: a baseline algorithm for fingerprint verification in FVC-ongoing. In: ICARCV, pp. 19–23. IEEE (2010)Google Scholar
  6. 6.
    Cappelli, R., Maio, D., Maltoni, D.: Synthetic fingerprint-database generation. In: Proceedings of the 16th International Conference on Pattern Recognition (ICPR 2002) Volume 3, ICPR 2002, vol. 3, p. 30744. IEEE Computer Society, Washington, DC (2002). http://dl.acm.org/citation.cfm?id=839291.842894
  7. 7.
    Chinese Academy of Sciences, Institute of Automation (2013). http://english.ia.cas.cn/
  8. 8.
    Damer, N., Terhörst, P., Braun, A., Kuijper, A.: Efficient, accurate, and rotation-invariant iris code. IEEE Signal Process. Lett. 24(8), 1233–1237 (2017). http://ieeexplore.ieee.org/document/7956157/ CrossRefGoogle Scholar
  9. 9.
    Daugman, J.: How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 14(1), 21–30 (2004)CrossRefGoogle Scholar
  10. 10.
    e-Aadhaar - Unique Identification Authority of India (2015). https://eaadhaar.uidai.gov.in/
  11. 11.
    Gadde, R.B., Adjeroh, D., Ross, A.: Indexing iris images using the burrows-wheeler transform. In: 2010 IEEE International Workshop on Information Forensics and Security, pp. 1–6, December 2010Google Scholar
  12. 12.
    Gyaourova, A., Ross, A.: A coding scheme for indexing multimodal biometric databases. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 93–98, June 2009Google Scholar
  13. 13.
    Gyaourova, A., Ross, A.: Index codes for multibiometric pattern retrieval. IEEE Trans. Inf. Forensics Secur. 7(2), 518–529 (2012)CrossRefGoogle Scholar
  14. 14.
    Hao, F., Daugman, J., Zielinski, P.: A fast search algorithm for a large fuzzy database. IEEE Trans. Inf. Forensics Secur. 3(2), 203–212 (2008). http://dx.doi.org/10.1109/TIFS.2008.920726 CrossRefGoogle Scholar
  15. 15.
    Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC 1998, pp. 604–613. ACM, New York (1998). http://doi.acm.org/10.1145/276698.276876
  16. 16.
    Jayaraman, U., Prakash, S., Devdatt, B., Gupta, P.: An indexing technique for biometric database. In: 2008 International Conference on Wavelet Analysis and Pattern Recognition, vol. 2, pp. 758–763, August 2008Google Scholar
  17. 17.
    Mehrotra, H., Srinivas, B.G., Majhi, B., Gupta, P.: Indexing iris biometric database using energy histogram of DCT subbands. In: Ranka, S., et al. (eds.) IC3 2009. CCIS, vol. 40, pp. 194–204. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03547-0_19 CrossRefGoogle Scholar
  18. 18.
    Mukherjee, R., Ross, A.: Indexing iris images. In: 19th International Conference on Pattern Recognition (ICPR 2008), 8–11 December 2008, Tampa, Florida, USA, pp. 1–4. IEEE Computer Society (2008). http://dx.doi.org/10.1109/ICPR.2008.4761880
  19. 19.
    Proenca, H., Alexandre, L.A.: Toward noncooperative iris recognition: a classification approach using multiple signatures. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 607–612 (2007). http://dx.doi.org/10.1109/TPAMI.2007.1016 CrossRefGoogle Scholar
  20. 20.
    Rathgeb, C., Breitinger, F., Baier, H., Busch, C.: Towards bloom filter-based indexing of iris biometric data. In: 2015 International Conference on Biometrics (ICB), pp. 422–429, May 2015Google Scholar
  21. 21.
    Rathgeb, C., Breitinger, F., Busch, C., Baier, H.: On application of bloom filters to iris biometrics. IET Biom. 3(4), 207–218 (2014). http://dx.doi.org/10.1049/iet-bmt.2013.0049 CrossRefGoogle Scholar
  22. 22.
    Rathgeb, C., Uhl, A.: Iris-biometric hash generation for biometric database indexing. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 2848–2851, August 2010Google Scholar
  23. 23.
    Slaney, M., Casey, M.: Locality-sensitive hashing for finding nearest neighbors. IEEE Sig. Process. Mag. 25(2), 128–131 (2008). http://dx.doi.org/10.1109/msp.2007.914237 CrossRefGoogle Scholar
  24. 24.
    Sun, Z., Tan, T.: Ordinal measures for iris recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2211–2226 (2009). http://dx.doi.org/10.1109/TPAMI.2008.240 CrossRefGoogle Scholar
  25. 25.
    Wei, Z., Tan, T., Sun, Z.: Synthesis of large realistic iris databases using patch-based sampling. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4, December 2008Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Naser Damer
    • 1
  • Philipp Terhörst
    • 1
    • 2
  • Andreas Braun
    • 1
  • Arjan Kuijper
    • 1
    • 3
  1. 1.Fraunhofer Institute for Computer Graphics Research (IGD)DarmstadtGermany
  2. 2.Physics DepartmentTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Mathematical and Applied Visual ComputingTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations