Advertisement

Streaming Algorithm for Euler Characteristic Curves of Multidimensional Images

  • Teresa HeissEmail author
  • Hubert Wagner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10424)

Abstract

We present an efficient algorithm to compute Euler characteristic curves of gray scale images of arbitrary dimension. In various applications the Euler characteristic curve is used as a descriptor of an image.

Our algorithm is the first streaming algorithm for Euler characteristic curves. The usage of streaming removes the necessity to store the entire image in RAM. Experiments show that our implementation handles terabyte scale images on commodity hardware. Due to lock-free parallelism, it scales well with the number of processor cores.

Additionally, we put the concept of the Euler characteristic curve in the wider context of computational topology. In particular, we explain the connection with persistence diagrams.

Keywords

Euler Characteristic Persistence Diagrams Commodity Hardware Cubical Complex Sublevel Sets 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bauer, U., Kerber, M., Reininghaus, J.: Distributed computation of persistent homology. In: 2014 Proceedings of the Sixteenth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 31–38. SIAM (2014)Google Scholar
  2. 2.
    Colley, W.N., Richard Gott III, J.: Genus topology of the cosmic microwave background from WMAP. Mon. Not. R. Astron. Soc. 344(3), 686–695 (2003)CrossRefGoogle Scholar
  3. 3.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  4. 4.
    Delgado-Friedrichs, O., Robins, V., Sheppard, A.: Skeletonization and partitioning of digital images using discrete morse theory. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 654–666 (2015)CrossRefGoogle Scholar
  5. 5.
    Dyer, C.R.: Computing the euler number of an image from its quadtree. Comput. Graph. Image Process. 13(3), 270–276 (1980)CrossRefGoogle Scholar
  6. 6.
    Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society (2010)Google Scholar
  7. 7.
    Gonzalez, R., Wintz, P.: Digital Image Processing. Addison-Wesley Publishing Co. Inc., Reading (1977)zbMATHGoogle Scholar
  8. 8.
    Gray, S.B.: Local properties of binary images in two dimensions. IEEE Trans. Comput. 100(5), 551–561 (1971)CrossRefzbMATHGoogle Scholar
  9. 9.
    Günther, D., Reininghaus, J., Wagner, H., Hotz, I.: Efficient computation of 3D Morse–Smale complexes and persistent homology using discrete Morse theory. Vis. Comput. 28(10), 959–969 (2012). SpringerGoogle Scholar
  10. 10.
    Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Odgaard, A., Gundersen, H.: Quantification of connectivity in cancellous bone, with special emphasis on 3-d reconstructions. Bone 14(2), 173–182 (1993)CrossRefGoogle Scholar
  12. 12.
    Pikaz, A., Averbuch, A.: An efficient topological characterization of gray-levels textures, using a multiresolution representation. Graph. Models Image Process. 59(1), 1–17 (1997)CrossRefGoogle Scholar
  13. 13.
    Rhoads, J.E., Gott, J.R., Postman, M.: The genus curve of the abell clusters. Astrophys. J. 421, 1–8 (1994)CrossRefGoogle Scholar
  14. 14.
    Richardson, E., Werman, M.: Efficient classification using the euler characteristic. Pattern Recognit. Lett. 49, 99–106 (2014)CrossRefGoogle Scholar
  15. 15.
    Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011)CrossRefGoogle Scholar
  16. 16.
    Saha, P.K., Chaudhuri, B.B.: A new approach to computing the euler characteristic. Pattern Recognit. 28(12), 1955–1963 (1995)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ségonne, F., Pacheco, J., Fischl, B.: Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Trans. Med. Imaging 26(4), 518–529 (2007)CrossRefGoogle Scholar
  18. 18.
    Snidaro, L., Foresti, G.: Real-time thresholding with euler numbers. Pattern Recognit. Lett. 24(9–10), 1533–1544 (2003)CrossRefzbMATHGoogle Scholar
  19. 19.
    Sossa-Azuela, J.H., et al.: On the computation of the euler number of a binary object. Pattern Recognit. 29(3), 471–476 (1996)CrossRefGoogle Scholar
  20. 20.
    Verri, A., Uras, C., Frosini, P., Ferri, M.: On the use of size functions for shape analysis. Biol. Cybern. 70(2), 99–107 (1993)CrossRefzbMATHGoogle Scholar
  21. 21.
    Wagner, H., Chen, C., Vuçini, E.: Efficient computation of persistent homology for cubical data. In: Workshop on Topology-based Methods in Data Analysis and Visualization (2011)Google Scholar
  22. 22.
    Ziou, D., Allili, M.: Generating cubical complexes from image data and computation of the euler number. Pattern Recognit. 35(12), 2833–2839 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.IST AustriaKlosterneuburgAustria
  2. 2.Vienna University of TechnologyViennaAustria

Personalised recommendations