Advertisement

Boron Isotopes pp 145-162 | Cite as

Boron Isotopic Systematics in Scleractinian Corals and the Role of pH Up-regulation

  • Malcolm T. McCulloch
  • Juan P. D’Olivo
  • James Falter
  • Lucy Georgiou
  • Michael Holcomb
  • Paolo Montagna
  • Julie A. Trotter
Chapter
Part of the Advances in Isotope Geochemistry book series (ADISOTOPE)

Abstract

The boron isotopic composition (δ11B) of scleractinian corals has been used to track changes in seawater pH and more recently as a probe into the processes controlling bio-calcification. For corals that precipitate aragonite skeletons, up-regulation of pH appears to be a general characteristic, typically being ~0.3 to ~0.6 pH units higher than ambient seawater. The relationship between the pH of the corals calcifying-fluid (pHcf) and seawater pHT (total scale) is shown to be dependent on both physiological as well environmental factors. In laboratory experiments conducted on symbiont-bearing (zooxanthellate) corals under conditions of constant temperature and seawater pH, changes in the δ11B derived calcifying fluid pHcf is typically 1/3 to 1/2 of that of ambient seawater. Similar linear relationships are found for cold water corals that live in relatively stable, cold, deep-water environments but at significantly elevated levels of pHcf (~0.5–1 pH units above seawater), a likely response to the lower pH of their deep-sea environments. In contrast, zooxanthellae-bearing corals living in shallow-water reef environments that experience significant natural variations in temperature, light, nutrients and seawater pH, show different types of responses. For example, over seasonal time-scales Porites corals from the Great Barrier Reef (GBR) have a large range in pHcf of ~8.3 to ~8.5, significantly greater (~×2 to ~×3) than that of reef-water (pHT ~8.01 to ~8.08), and an order of magnitude greater than that expected from ‘static’ laboratory experiments. Strong physiological controls, but of a different character, are found in corals grown in a Free Ocean Carbon Enrichment Experiment (FOCE) conducted in situ within the Heron Island lagoon (GBR). These corals exhibit near constant pHcf values regardless of external changes in temperature and seawater pH. This pattern of strong physiologically controlled ‘pH-homeostasis’, with elevated but constant pHcf has been found despite large natural seasonal variations in the pH (±0.15 pH units) of the lagoon waters, as well as the even larger super-imposed decreases in seawater pH (~0.25 pH units) designed to simulate year 2100 conditions. In natural reef environments we thus find that the processes influencing the up-regulation of pHcf in symbiont-bearing corals are subject to strong physiological controls, behaviour that is not well simulated in the current generation of aquaria-based experiments with fixed seawater pH and temperature. Conversely, cold-water corals that lack symbionts and inhabit the relatively stable deep-sea environments hold the best prospects for providing reliable reconstructions of seawater pH. Clearly, further studies utilising the δ11B-pHcf proxy combined with other DIC/carbonate-ion proxies (e.g. B/Ca), but conducted under realistic ‘natural’ conditions, are required to elucidate the processes controlling coral bio-calcification and to better understand the vulnerability of scleractinian corals to anthropogenic driven warming and ocean acidification.

Keywords

pH up-regulation Boron isotopes Corals 

Notes

Acknowledgements

This research was supported by funding from an ARC Laureate Fellowship awarded to Professor Malcolm McCulloch and the ARC Centre of Excellence for Coral Reef Studies. Dr Julie Trotter was supported by an ARC Future Fellowship and Dr Michael Holcomb by an ARC Super Science Fellowship. Dr Paolo Montagna is grateful for ongoing support by the Institute of Marine Sciences, CNR, Italy and this is ISMAR-CNR Bologna scientific contribution n. 1915. We thank Anne-Marin Comeau and Dr Kai Rankenburg for their technical assistance with measurements of the δ11B isotopic and B/Ca elemental ratios being conducted at The University of Western Australia’s Advanced Geochemical Facility for Indian Ocean Research (AGFIOR).

References

  1. Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: active internal carbon cycle. J Exp Mar Biol Ecol 288(1):1–15CrossRefGoogle Scholar
  2. Albright R, Langdon C, Anthony K (2013) Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef. Biogeosciences 10(10):6747–6758CrossRefGoogle Scholar
  3. Allemand D, Ferrier-Pagès C, Furla P, Houbrèque F, Puverel S, Reynaud S, Tambutté E, Tambutté S, Zoccola D (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. CR Palevol 3(6–7):453–467CrossRefGoogle Scholar
  4. Allemand D, Tambutté E, Zoccola D, Tambutté S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Berlin, pp 119–150CrossRefGoogle Scholar
  5. Allison N, Finch AA, Eimf (2010) Delta B-11, Sr, Mg and B in a modern Porites coral: the relationship between calcification site pH and skeletal chemistry. Geochim Cosmochim Acta 74(6):1790–1800CrossRefGoogle Scholar
  6. Allison N, Cohen I, Finch AA, Erez J, Tudhope AW (2014) Corals concentrate dissolved inorganic carbon to facilitate calcification. Nat Commun 5:5741Google Scholar
  7. Anagnostou E, Huang KF, You CF, Sikes EL, Sherrell RM (2012) Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: evidence of physiological pH adjustment. Earth Planet Sci Lett 349:251–260CrossRefGoogle Scholar
  8. Barnes D (1983) Profiling coral reef productivity and calcification using pH and oxygen electrodes. J Exp Mar Biol Ecol 66(2):149–161CrossRefGoogle Scholar
  9. Blamart D, Rollion-Bard C, Meibom A, Cuif J-P, Juillet-Leclerc A, Dauphin Y (2007) Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: implications for biomineralization and paleopH. Geochem Geophys Geosyst 8(Q12001):11Google Scholar
  10. Buddemeier RW, Maragos JE, Knutson DW (1974) Radiographic studies of reef coral exoskeletons: rates and patterns of coral growth. J Exp Mar Biol Ecol 14(2):179–199Google Scholar
  11. Burton EA, Walter LM (1987) Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control? Geology 15(2):111–114CrossRefGoogle Scholar
  12. Caldeira K, Archer D, Barry JP, Bellerby RGJ, Brewer PG, Cao L, Dickson AG, Doney SC, Elderfield H, Fabry VJ, Feely RA, Gattuso JP, Haugan PM, Hoegh-Guldberg O, Jain AK, Kleypas JA, Langdon C, Orr JC, Ridgwell A, Sabine CL, Seibel BA, Shirayama Y, Turley C, Watson AJ, Zeebe RE (2007) Comment on “modern-age buildup of CO2 and its effects on seawater acidity and salinity” by Hugo A. Loaiciga. Geophys Res Lett 34(18)Google Scholar
  13. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M (eds) (2014) Carbon and other biogeochemical cycles. Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 465–570Google Scholar
  14. Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: uncovering the mechanism. Oceanography 22(4):118–127CrossRefGoogle Scholar
  15. Cohen AL, McConnaughey T (2003) Geochemical perspectives on coral mineralization. In: Dove P, Weiner S, Yoreo J (eds) Biomineral Rev Mineral Geochem pp. 151–187Google Scholar
  16. Dennison WC, Barnes DJ (1988) Effect of water motion on coral photosynthesis and calcification. J Exp Mar Biol Ecol 115(1):67–77CrossRefGoogle Scholar
  17. Dickson AG (1990) Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res Part A 37:755–766CrossRefGoogle Scholar
  18. Douville E, Paterne M, Cabioch G, Louvat P, Gaillardet J, Juillet-Leclerc A, Ayliffe L (2010) Abrupt sea surface pH change at the end of the Younger Dryas in the central sub-equatorial Pacific inferred from boron isotope abundance in corals (Porites). Biogeosciences 7(8):2445–2459CrossRefGoogle Scholar
  19. D’Olivo JP, McCulloch MT, Eggins SM, Trotter J (2015) Coral records of reef-water pH across the central Great Barrier Reef, Australia: assessing the influence of river runoff on inshore reefs. Biogeosciences 12(4):1223Google Scholar
  20. Erez J (2003) The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. In: Dove PM, Yoreao JJD, Weiner S (eds) Rev Mineral Geochem 54:115–149Google Scholar
  21. Falter JL, Lowe RJ, Zhang ZL, McCulloch M (2013) Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology. PLoS ONE 8(1)Google Scholar
  22. Fautin DG, Guinotte JM, Orr JC (2009) Comparative depth distribution of corallimorpharians and scleractinians (Cnidaria: Anthozoa). Mar Ecol Prog Ser 397:63–70CrossRefGoogle Scholar
  23. Försterra G, Beuck L, Häussermann V, Freiwald A (eds) (2005) Shallow-water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocoenoses, the bioeroding community, heterotrophic interactions and (paleo)-bathymetric implications. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 937–977Google Scholar
  24. Foster GL, Rae J, Elliott T (2008) Boron isotope measurements of marine carbonate using MC-ICPMS. Geochim Cosmochim Acta 72(12):A279Google Scholar
  25. Foster GL, Pogge von Strandmann, PAE, Rae JWB (2010) Boron and magnesium isotopic composition of seawater. Geochem Geophys Geosyst 11(8)Google Scholar
  26. Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183CrossRefGoogle Scholar
  27. Gattuso JP, Kirkwood W, Barry JP, Cox E, Gazeau F, Hansson L, Hendriks I, Kline DI, Mahacek P, Martin S, McElhany P, Peltzer ET, Reeve J, Roberts D, Saderne V, Tait K, Widdicombe S, Brewer PG (2014) Free-ocean CO2 enrichment (FOCE) systems: present status and future developments. Biogeosciences 11(15):4057–4075CrossRefGoogle Scholar
  28. Georgiou L, Falter J, Trotter J, Kline DI, Holcomb M, Dove SG, Hoegh-Guldberg O, McCulloch M (2015) pH homeostasis during coral calcification in a free ocean CO2 enrichment (FOCE) experiment, Heron Island reef flat, Great Barrier Reef. Proc Natl Acad Sci 112(43):13219–13224CrossRefGoogle Scholar
  29. Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta 56(1):537–543CrossRefGoogle Scholar
  30. Holcomb M, Cohen AL, Gabitov RI, Hutter JL (2009) Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals. Geochim Cosmochim Acta 73(14):4166–4179CrossRefGoogle Scholar
  31. Holcomb M, Venn AA, Tambutte E, Tambutte S, Allemand D, Trotter J, McCulloch M (2014) Coral calcifying fluid pH dictates response to ocean acidification. Sci Rep 4:5207–5211CrossRefGoogle Scholar
  32. Honisch B, Hemming NG (2004) Ground-truthing the boron isotope-paleo-pH proxy in planktonic foraminifera shells: partial dissolution and shell size effects. Paleoceanography 19(4)Google Scholar
  33. Honisch B, Hemming NG (2005) Surface ocean pH response to variations in pCO2 through two full glacial cycles. Earth Planet Sci Lett 236:305–314CrossRefGoogle Scholar
  34. Honisch B, Hemming NG, Grottoli AG, Amat A, Hanson GN, Bijma J (2004) Assessing scleractinian corals as recorders for paleo-pH: empirical calibration and vital effects. Geochim Cosmochim Acta 68:3675–3685CrossRefGoogle Scholar
  35. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nystrom M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301(5635):929–933CrossRefGoogle Scholar
  36. Kakihana H, Kotaka M, Satoh S, Nomura M, Okamoto M (1977) Fundamental studies on the ion-exchange separation of boron isotopes. Chem Soc Jpn B50:158–163CrossRefGoogle Scholar
  37. Kline DI, Teneva L, Schneider K, Miard T, Chai A, Marker M, Headley K, Opdyke B, Nash M, Valetich M (2012) A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Sci Rep 2Google Scholar
  38. Kline DI, Teneva L, Hauri C, Schneider K, Miard T, Chai A, Marker M, Dunbar R, Caldeira K, Lazar B, Rivlin T, Mitchell BG, Dove S, Hoegh-Guldberg O (2015) Six month in situ high-resolution carbonate chemistry and temperature study on a coral reef flat reveals asynchronous pH and temperature anomalies. PLoS ONE 10(6):e0127648CrossRefGoogle Scholar
  39. Klochko K, Kaufman AJ, Yoa W, Byrne RH, Tossell JA (2006) Experimental measurement of boron isotope fractionation in seawater. Earth Planet Sci Lett 248:261–270CrossRefGoogle Scholar
  40. Klochko K, Cody GD, Tossell JA, Dera P, Kaufman AJ (2009) Re-evaluating boron speciation in biogenic calcite and aragonite using 11B MAS NMR. Geochim Cosmochim Acta 73(7):1890–1900CrossRefGoogle Scholar
  41. Knutson DW, Buddemeier RW, Smith SV (1972) Coral chronometers: seasonal growth bands in reef corals. Science 177(4045):270–272Google Scholar
  42. Krief S, Hendy EJ, Fine M, Yam R, Meibom A, Foster GL, Shemesh A (2010) Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim Cosmochim Acta 74(17):4988–5001CrossRefGoogle Scholar
  43. Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. In: C.D.I.A. Center (ed). Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, p 21Google Scholar
  44. Liu Y, Liu W, Peng Z, Xiao Y, Wei G, Sun W, He J, Liu G, Chou C-L (2009) Instability of seawater pH in the South China Sea during the mid-late Holocene: evidence from boron isotopic composition of corals. Geochim Cosmochim Acta 73(5):1264–1272CrossRefGoogle Scholar
  45. Mavromatis V, Montouillout V, Noireaux J, Gaillardet J, Schott J (2015) Characterization of boron incorporation and speciation in calcite and aragonite from co-precipitation experiments under controlled pH, temperature and precipitation rate. Geochim Cosmochim Acta 150:299–313CrossRefGoogle Scholar
  46. McCulloch M, Falter J, Trotter J, Montagna P (2012a) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Change 2(8):623–627CrossRefGoogle Scholar
  47. McCulloch MT, Trotter JA, Montagna P, Falter J, Dunbar R, Freiwald A, Försterra G, López Correa M, Maier C, Rüggeberg A, Taviani M, Thresher R (2012b) Boron isotope systematics of cold-water scleractinian corals: internal pH up-regulation and response to ocean acidification. Geochim Cosmochim Acta 87:21–34CrossRefGoogle Scholar
  48. McCulloch MT, D’Olivo JP, Falter J, Holcomb M, Trotter JA (2017) Coral calcification in a changing World and the interactive dynamics of pH and DIC upregulation. Nat Commun 8Google Scholar
  49. Moya A, Tambutté S, Bertucci A, Tambutté E, Lotto S, Vullo D, Supuran CT, Allemand D, Zoccola D (2008) Carbonic anhydrase in the scleractinian coral Stylophora pistillata characterization, localization, and role in biomineralization. J Biol Chem 283(37):25475–25484CrossRefGoogle Scholar
  50. Noireaux J, Mavromatis V, Gaillardet J, Schott J, Montouillout V, Louvat P, Rollion-Bard C, Neuville D (2015) Crystallographic control on the boron isotope paleo-pH proxy. Earth Planet Sci Lett 430:398–407CrossRefGoogle Scholar
  51. Pelejero C, Calvo E, McCulloch MT, Marshall JF, Gagan MK, Lough JM, Opdyke BN (2005) Preindustrial to modern interdecadal variability in coral reef pH. Science 309(5744):2204–2207CrossRefGoogle Scholar
  52. Rae JWB, Foster GL, Schmidt DN, Elliott T (2011) Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system. Earth Planet Sci Lett 302(3–4):403–413CrossRefGoogle Scholar
  53. Reynaud S, Hemming NG, Juillet-Leclerc A, Gattuso J-P (2004) Effect of pCO2 and temperature on the boron isotopic composition of the zooxanthellate coral Acropora sp. Coral Reefs 23:539–546Google Scholar
  54. Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312(5773):543–547CrossRefGoogle Scholar
  55. Rollion-Bard C, Chaussidon M, France-Lanord C (2003) pH control on oxygen isotopic composition of symbiotic corals. Earth Planet Sci Lett 215(1–2):275–288CrossRefGoogle Scholar
  56. Rollion-Bard C, Blamart D, Trebosc J, Tricot G, Mussi A, Cuif J-P (2011) Boron isotopes as pH proxy: a new look at boron speciation in deep-sea corals using 11B MAS NMR and EELS. Geochimica et Cosmochimicha Acta 75:1003–1012CrossRefGoogle Scholar
  57. Tanaka K, Holcomb M, Takahashi A, Kurihara H, Asami R, Shinjo R, Sowa K, Rankenburg K, Watanabe T, McCulloch M (2015) Response of Acropora digitifera to ocean acidification: constraints from δ11B, Sr, Mg, and Ba compositions of aragonitic skeletons cultured under variable seawater pH. Coral Reefs 34(4):1139–1149CrossRefGoogle Scholar
  58. Thresher RE, Tilbrook B, Fallon S, Wilson NC, Adkins J (2011) Effects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos. Mar Ecol Prog Ser 442:87–99CrossRefGoogle Scholar
  59. Trotter JA, Montagna P, McCulloch MT, Silenzi S, Reynaud S, Mortimer G, Martin S, Ferrier-Pageè C, Gattuso J-P, Rodolfo-Metalpa R (2011) Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral Cladocora caespitosa: validation of the boron seawater pH proxy. Earth Planet Sci Lett 303:163–173CrossRefGoogle Scholar
  60. van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109(1–2):5–31CrossRefGoogle Scholar
  61. Vengosh A, Kolodny Y, Starinsky A, Chivas AR, McCulloch MT (1991) Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim Cosmochim Acta 55(10):2901–2910CrossRefGoogle Scholar
  62. Venn AA, Tambutte E, Lotto S, Zoccola D, Allemand D, Tamubtte S (2009) Imaging intracellular pH in a reef coral and symbiotic anemone. In: Falkowski PG (ed) PNAS, pp 16574–16579Google Scholar
  63. Venn AA, Tambutte E, Holcomb M, Laurent J, Allemand D, Tambutte S (2013) Impact of seawater acidification on pH at the tissue–skeleton interface and calcification in reef corals. Proc Natl Acad Sci U S A 110(5):1634–1639CrossRefGoogle Scholar
  64. Wall M, Fietzke J, Schmidt GM, Fink A, Hofmann LC, de Beer D, Fabricius KE (2016) Internal pH regulation facilitates in situ long-term acclimation of massive corals to end-of-century carbon dioxide conditions. Sci Rep 6:30688CrossRefGoogle Scholar
  65. Wei G, McCulloch MT, Mortimer G, Deng W, Xie L (2009) Evidence for ocean acidification in the Great Barrier Reef of Australia. Geochim Cosmochim Acta 73:2332–2346CrossRefGoogle Scholar
  66. Zeebe R, Wolf-Gladow DA (2001) CO2 in seawater: equilibrium, kinetics, isotopes Elsevier Oceanography Series, vol 65. Elsevier, Amsterdam, p 65Google Scholar
  67. Zoccola D, Ganot P, Bertucci A, Caminiti-Segonds N, Techer N, Voolstra CR, Aranda M, Tambutté E, Allemand D, Casey JR, Tambutté S (2015) Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. Sci Rep 5:9983CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Malcolm T. McCulloch
    • 1
    • 2
  • Juan P. D’Olivo
    • 1
    • 2
  • James Falter
    • 1
    • 2
  • Lucy Georgiou
    • 1
    • 2
  • Michael Holcomb
    • 1
  • Paolo Montagna
    • 3
  • Julie A. Trotter
    • 1
  1. 1.Oceans Institute Graduate School and School of Earth SciencesThe University of Western AustraliaCrawleyAustralia
  2. 2.ARC Centre of Excellence for Coral Reef StudiesThe University of Western AustraliaCrawleyAustralia
  3. 3.Institute of Marine SciencesCNRBolognaItaly

Personalised recommendations