Advertisement

Multiple-Valued Debiasing for Physically Unclonable Functions and Its Application to Fuzzy Extractors

  • Manami Suzuki
  • Rei Ueno
  • Naofumi Homma
  • Takafumi Aoki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10348)

Abstract

This paper proposes a new debiasing method for a stable and efficient extraction of uniform random binary responses from physically unclonable functions (PUFs). The proposed method handles multiple-valued (i.e., ternary) responses from PUF responses, including unstable response bits, and stably extracts uniform random-bit responses from them. In this paper, we evaluate the stability and effectiveness of the proposed method with two experiments with simulated and actual responses of latch PUFs implemented on an FPGA. We demonstrate that the proposed method can obtain longer debiased random-bit responses than the conventional method. In addition, we apply the proposed method to the construction of a fuzzy extractor (FE), and show the advantages of the proposed FE in terms of response length and authentication success rate in an experimental evaluation.

Keywords

PUF Fuzzy extractors Latch PUF Debiasing Multiple-valued logic 

Notes

Acknowledgment

This work has been supported by JSPS KAKENHI Grants No. 16K12436 and No. 16J05711.

References

  1. 1.
    Dodis, Y., Reyzin, M., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74735-2_5 CrossRefGoogle Scholar
  3. 3.
    Koeberl, P., Li, J., Rajan, A., Wu, W.: Entropy loss in puf-based key generation schemes : the repetition code pitfall, pp. 44–49 (2014)Google Scholar
  4. 4.
    Lily, C.: Recommendation for key derivation using pseudorandom functions(revised) (2009)Google Scholar
  5. 5.
    Lily, C.: Recommendation for key derivation through extraction-then-expansion (2011)Google Scholar
  6. 6.
    Lim, D., Lee, J., Gassend, B., Suh, G., van Dijk, M., Devadas, S.: Extracting secret keys from integrated circuits. IEEE Trans. Very Large Scale Integer VLSI Syst. 13(10), 1200–1205 (2005)CrossRefGoogle Scholar
  7. 7.
    Maes, R.: Physically Unclonable Functions. Springer, Heidelberg (2013)CrossRefMATHGoogle Scholar
  8. 8.
    Maes, R., Leest, V., Sluis, E., Willems, F.: Secure key generation from biased PUFs. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 517–534. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48324-4_26 CrossRefGoogle Scholar
  9. 9.
    von Neumann, J.: Various techniques used in connection with random digits. Appl. Math. Ser. 12, 36–38 (1951). National Bureau of Standards, USAGoogle Scholar
  10. 10.
    Su, Y., Holleman, J., Otis, B.: A 1.6pj/bit 96% stable chip-id generating circuit using process variations. In: IEEE International Solid-State Circuits Conference (ISSCC2007), pp. 406–611 (2007)Google Scholar
  11. 11.
    Su, Y., Holleman, J., Otis, B.: A digital 1.6pj/bit chip identification circuit using process variations. IEEE J. Solid-State Circ. 43(1), 69–77 (2008)CrossRefGoogle Scholar
  12. 12.
    Yamamoto, D., Sakiyama, K., Iwamoto, M., Ohta, K., Takenaka, M., Itoh, K.: Variety enhancement of PUF responce using the locations of random outputting RS latches. Crypt. Eng. 3(4), 197–211 (2013)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Manami Suzuki
    • 1
  • Rei Ueno
    • 1
  • Naofumi Homma
    • 1
  • Takafumi Aoki
    • 1
  1. 1.Tohoku UniversityAoba-ku, Sendai-shiJapan

Personalised recommendations