An Integrated Research Infrastructure for Validating Cyber-Physical Energy Systems

  • T. I. Strasser
  • C. Moyo
  • R. Bründlinger
  • S. Lehnhoff
  • M. Blank
  • P. Palensky
  • A. A. van der Meer
  • K. Heussen
  • O. Gehrke
  • J. E. Rodriguez
  • J. Merino
  • C. Sandroni
  • M. Verga
  • M. Calin
  • A. Khavari
  • M. Sosnina
  • E. de Jong
  • S. Rohjans
  • A. Kulmala
  • K. Mäki
  • R. Brandl
  • F. Coffele
  • G. M. Burt
  • P. Kotsampopoulos
  • N. Hatziargyriou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10444)

Abstract

Renewables are key enablers in the plight to reduce greenhouse gas emissions and cope with anthropogenic global warming. The intermittent nature and limited storage capabilities of renewables culminate in new challenges that power system operators have to deal with in order to regulate power quality and ensure security of supply. At the same time, the increased availability of advanced automation and communication technologies provides new opportunities for the derivation of intelligent solutions to tackle the challenges. Previous work has shown various new methods of operating highly interconnected power grids, and their corresponding components, in a more effective way. As a consequence of these developments, the traditional power system is being transformed into a cyber-physical energy system, a smart grid. Previous and ongoing research have tended to mainly focus on how specific aspects of smart grids can be validated, but until there exists no integrated approach for the analysis and evaluation of complex cyber-physical systems configurations. This paper introduces integrated research infrastructure that provides methods and tools for validating smart grid systems in a holistic, cyber-physical manner. The corresponding concepts are currently being developed further in the European project ERIGrid.

Keywords

Cyber-physical energy systems Research infrastructure Smart grids Testing Validation 

Notes

Acknowledgments

This work is supported by the European Communitys Horizon 2020 Program (H2020/2014-2020) under project “ERIGrid” (Grant Agreement No. 654113).

References

  1. 1.
    European Research Infrastructure supporting Smart Grid Systems Technology Development, Validation and Roll Out (ERIGrid). https://www.erigrid.eu. Accessed 07 Apr 2017
  2. 2.
    Strategic Research Agenda for Europes Electricity Networks of the Future. European Commission (EC) - Directorate-General for Research (2007)Google Scholar
  3. 3.
    10 Steps to Smart Grids - EURELECTRIC DSOs Ten-Year Roadmap for Smart Grid Deployment in the EU. Eurelectric (2011)Google Scholar
  4. 4.
    Smart Grid Mandate - Standardization Mandate to European Standardisation Organisations (ESOs) to support European Smart Grid deployment. European Commission (EC) (2011)Google Scholar
  5. 5.
    Technology Roadmap: Smart Grids. International Energy Agency (IEA) (2011)Google Scholar
  6. 6.
    International Smart Grid Action Network (ISGAN) Annex 5: Smart Grid International Research Facility Network (SIRFN). International Energy Agency (IEA) (2013)Google Scholar
  7. 7.
    SmartGrids SRA 2035 Strategic Research Agenda, Update of the Smart Grids SRA 2007 for the needs by the year 2035. European Technology Platform Smart Grids (2013)Google Scholar
  8. 8.
    Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to AR5 (2014)Google Scholar
  9. 9.
    Al Faruque, M.A., Ahourai, F.: A model-based design of cyber-physical energy systems. In: 19th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 97–104 (2014)Google Scholar
  10. 10.
    Blank, M., Lehnhoff, S., Heussen, K., Bondy, D.M., Moyo, C., Strasser, T.: Towards a foundation for holistic power system validation and testing. In: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–4 (2016)Google Scholar
  11. 11.
    Bringmann, E., Krmer, A.: Model-based testing of automotive systems. In: 2008 1st International Conference on Software Testing, Verification, and Validation, pp. 485–493 (2008)Google Scholar
  12. 12.
    Brunner, H., Bründlinger, R., Calin, M., Heckmann, W., Bindner, H., Verga, M.: Proposal for a coordinated investment planning of the future European smart grid research infrastructure. ELECTRA IRP, Deliverable D2.2 (2016)Google Scholar
  13. 13.
    Farhangi, H.: The path of the smart grid. IEEE Power Energ. Mag. 8(1), 18–28 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fouchal, H., Wilhelm, G., Bourdy, E., Wilhelm, G., Ayaida, M.: A testing framework for intelligent transport systems. In: 2016 IEEE Symposium on Computers and Communication (ISCC), pp. 180–184 (2016)Google Scholar
  15. 15.
    Ilic, M.D., Xie, L., Khan, U.A.: Modeling future cyber-physical energy systems. In: Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century (2008)Google Scholar
  16. 16.
    Khan, U.A., Stakovic, A.M.: Security in cyber-physical energy systems. In: Workshop on Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES) (2013)Google Scholar
  17. 17.
    Kleissl, J., Agarwal, Y.: Cyber-physical energy systems: focus on smart buildings. In: 47th Design Automation Conference, pp. 749–754 (2010)Google Scholar
  18. 18.
    Macana, C.A., Quijano, N., Mojica-Nava, E.: A survey on cyber physical energy systems and their applications on smart grids. In: IEEE PES Conference on Innovative Smart Grid Technologies (ISGT Latin America) (2011)Google Scholar
  19. 19.
    Morris, T.H., Srivastava, A.K., Reaves, B., Pavurapu, K., Abdelwahed, S., Vaughn, R., McGrew, W., Dandass, Y.: Engineering future cyber-physical energy systems: challenges, research needs, and roadmap. In: North American Power Symposium (NAPS) (2009)Google Scholar
  20. 20.
    Palensky, P., Widl, E., Elsheikh, A.: Simulating cyber-physical energy systems: challenges, tools and methods. IEEE Trans. Syst. Man Cybern.: Syst. 44(3), 318–326 (2014)CrossRefGoogle Scholar
  21. 21.
    Sridhar, S., Hahn, A., Govindarasu, M.: Cyber-physical system security for the electric power grid. Proc. IEEE 100(1), 210–224 (2012)CrossRefGoogle Scholar
  22. 22.
    Stifter, M., Bletterie, B., Brunner, H., Burnier, D., Sawsan, H., Andrén, F., Schwalbe, R., Abart, A., Nenning, R., Herb, F., Pointner, R.: DG DemoNet validation: voltage control from simulation to field test. In: 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), pp. 1–8, December 2011Google Scholar
  23. 23.
    Strasser, T., Andrén, F., Kathan, J., Cecati, C., Buccella, C., Siano, P., Leitao, P., Zhabelova, G., Vyatkin, V., Vrba, P., Marik, V.: A review of architectures and concepts for intelligence in future electric energy systems. IEEE Trans. Industr. Electron. 62(4), 2424–2438 (2015)CrossRefGoogle Scholar
  24. 24.
    Strasser, T., Andrén, F., Merdan, M., Prostejovsky, A.: Review of trends and challenges in smart grids: an automation point of view. In: Mařík, V., Lastra, J.L.M., Skobelev, P. (eds.) HoloMAS 2013. LNCS, vol. 8062, pp. 1–12. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40090-2_1 CrossRefGoogle Scholar
  25. 25.
    Strasser, T., Pröstl Andrén, F., Lauss, G., et al.: Towards holistic power distribution system validation and testing–an overview and discussion of different possibilities. e & i Elektrotechnik und Informationstechnik 134(1), 71–77 (2017)CrossRefGoogle Scholar
  26. 26.
    Uslar, M., Specht, M., Dänekas, C., Trefke, J., Rohjans, S., González, J.M., Rosinger, C., Bleiker, R.: Standardization in Smart Grids: Introduction to IT-related Methodologies, Architectures and Standards. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34916-4 Google Scholar
  27. 27.
    Wu, W., Aziz, M.K., Huang, H., Yu, H., Gooi, H.B.: A real-time cyber-physical energy management system for smart houses. In: IEEE PES Innovative Smart Grid Technologies Asia (ISGT) (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • T. I. Strasser
    • 1
  • C. Moyo
    • 1
  • R. Bründlinger
    • 1
  • S. Lehnhoff
    • 2
  • M. Blank
    • 2
  • P. Palensky
    • 3
  • A. A. van der Meer
    • 3
  • K. Heussen
    • 4
  • O. Gehrke
    • 4
  • J. E. Rodriguez
    • 5
  • J. Merino
    • 5
  • C. Sandroni
    • 6
  • M. Verga
    • 6
  • M. Calin
    • 7
  • A. Khavari
    • 7
  • M. Sosnina
    • 7
  • E. de Jong
    • 8
  • S. Rohjans
    • 9
  • A. Kulmala
    • 10
  • K. Mäki
    • 10
  • R. Brandl
    • 11
  • F. Coffele
    • 12
  • G. M. Burt
    • 12
  • P. Kotsampopoulos
    • 13
  • N. Hatziargyriou
    • 13
  1. 1.AIT Austrian Institute of TechnologyViennaAustria
  2. 2.OFFIS e.V.OldenburgGermany
  3. 3.Delft University of TechnologyDelftThe Netherlands
  4. 4.Technical University of DenmarkLyngbyDenmark
  5. 5.TECNALIA Research & InnovationDerioSpain
  6. 6.Ricerca Sul Sistema EnergeticoMilanoItaly
  7. 7.European Distributed Energy Resources Laboratories (DERlab) e.V.KasselGermany
  8. 8.DNV GLArnhemThe Netherlands
  9. 9.HAW Hamburg University of Applied SciencesHamburgGermany
  10. 10.VTT Technical Research Centre of FinlandEspooFinland
  11. 11.Fraunhofer Institute of Wind Energy and Energy System TechnologyKasselGermany
  12. 12.University of StrathclydeGlasgowUK
  13. 13.National Technical University of AthensAthensGreece

Personalised recommendations