Skip to main content

Hybrid RANS/LES Simulations of the Three-Dimensional Flow at Root Region of a 10 MW Wind Turbine Rotor

  • Conference paper
  • First Online:
New Results in Numerical and Experimental Fluid Mechanics XI

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 136))

Abstract

Numerical computations using the Unsteady Reynolds Averaged Navier-Stokes (URANS) and Delayed Detached-Eddy Simulations (DDES) approaches are carried out to investigate the complex three-dimensional flow in the root region of a generic 10 MW wind turbine rotor. Preliminary studies regarding the time step size and the number of rotor revolution required for the time averaging procedure are conducted. In the blade outer region, URANS is sufficient to predict the general flow characteristics, but small discrepancies are observed in the blade root area where the flow is massively separated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bak, C., Zahle, F., Bitsche, R., Kim, T., et al.: Design and performance of a 10 MW turbine. Tech. rep., Technical University of Denmark, dtu-10MW-rwt.vindenergi.dtu.dk (2013)

    Google Scholar 

  2. Baker, J., Mayda, E., Van Dam, C.: Experimental analysis of thick blunt trailing-edge wind turbine airfoils. Journal of Solar Energy Engineering 128(4), 422–431 (2006)

    Article  Google Scholar 

  3. Bangga, G., Hutomo, G., Wiranegara, R., Sasongko, H.: Numerical study on a single bladed vertical axis wind turbine under dynamic stall. Journal of Mechanical Science and Technology 31(1), 261–267 (2017). https://doi.org/10.1007/s12206-016-1228-9

  4. Bangga, G., Kim, Y., Lutz, T., Weihing, P., Krämer, E.: Investigations of the inflow turbulence effect on rotational augmentation by means of CFD. Journal of Physics: Conference Series 753(2), 22–26 (2016). https://doi.org/10.1088/1742-6596/753/2/022026

  5. Bangga, G., Lutz, T., Krämer, E.: Numerical investigation of unsteady aerodynamic effects on thick flatback airfoils. In: Proceedings of German Wind Energy Conference 12, DEWEK 2015. Bremen, Germany (May 19–20, 2015)

    Google Scholar 

  6. Bangga, G., Lutz, T., Krämer, E.: An examination of rotational effects on large wind turbine blades. In: EAWE PhD Seminar 11. Stuttgart, Germany (September 23–25, 2015)

    Google Scholar 

  7. Bangga, G., Sasongko, H.: Dynamic stall prediction of a pitching airfoil using an adjusted two-equation URANS turbulence model. Journal of Applied Fluid Mechanics 10(1), 1–10 (2017). https://doi.org/10.18869/acadpub.jafm.73.238.26391

  8. Bangga, G., Weihing, P., Lutz, T., Krämer, E.: Effect of computational grid on accurate prediction of a wind turbine rotor using delayed detached-eddy simulations. Journal of Mechanical Science and Technology 31(5), 2359–2364 (2017). https://doi.org/10.1007/s12206-017-0432-6

  9. Jameson, A., Schmidt, W., Turkel, E., et al.: Numerical solutions of the euler equations by finite volume methods using runge-kutta time-stepping schemes. AIAA paper 1259, 1981 (1981)

    Google Scholar 

  10. Johansen, J., Sorensen, N., Michelsen, J., Schreck, S.: Detached-eddy simulation of flow around the NREL phase VI blade. In: ASME 2002 Wind Energy Symposium, pp. 106–114. American Society of Mechanical Engineers (2002)

    Google Scholar 

  11. Kim, Y., Jost, E., Bangga, G., Weihing, P., Lutz, T.: Effects of ambient turbulence on the near wake of a wind turbine. Journal of Physics: Conference Series 753(3), 32–47 (2016). https://doi.org/10.1088/1742-6596/753/3/032047

  12. Kroll, N., Rossow, C.C., Becker, K., Thiele, F.: The megaflow project. Aerospace Science and Technology 4(4), 223–237 (2000)

    Article  MATH  Google Scholar 

  13. Lekou, D., Chortis, D., Chaviaropoulos, P., Munduate, X., Irisarri, A., et al.: Avatar deliverable d1.2 reference blade design. Tech. rep., ECN Wind Energy (2015)

    Google Scholar 

  14. Li, Y., Paik, K.J., Xing, T., Carrica, P.M.: Dynamic overset cfd simulations of wind turbine aerodynamics. Renewable Energy 37(1), 285–298 (2012)

    Article  Google Scholar 

  15. Menter, F., Kuntz, M.: Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles. In: The aerodynamics of heavy vehicles: trucks, buses, and trains, pp. 339–352. Springer (2004)

    Google Scholar 

  16. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  17. Schepers, J., Ceyhan, O., Savenije, F., Stettner, M., et al.: Avatar: Advanced aerodynamic tools for large rotors. In: Proceedings of 33rd ASME Wind Energy Symposium (2015)

    Google Scholar 

  18. Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid rans-les approach with delayed-des and wall-modelled les capabilities. Int. J. Heat Fluid Fl. 29(6), 1638–1649 (2008)

    Article  Google Scholar 

  19. Spalart, P., Jou, W., Strelets, M., Allmaras, S., et al.: Comments on the feasibility of les for wings, and on a hybrid rans/les approach. Advances in DNS/LES 1, 4–8 (1997)

    Google Scholar 

  20. Spalart, P.R.: Detached-eddy simulation. Annual review of fluid mechanics 41, 181–202 (2009)

    Article  MATH  Google Scholar 

  21. Spalart, P.R., Deck, S., Shur, M., Squires, K., et al.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoretical and computational fluid dynamics 20(3), 181–195 (2006)

    Article  MATH  Google Scholar 

  22. Waldmann, A., Gansel, P.P., Lutz, T., Krämer, E.: Unsteady wake of the nasa common research model in low-speed stall. Journal of Aircraft pp. 1–14 (2015)

    Google Scholar 

  23. Weihing, P., Letzgus, J., Bangga, G., Lutz, T., Krämer, E.: Hybrid rans/les capabilities of the flow solver flower - application to flow around wind turbines. In: 6th Symposium on Hybrid RANS-LES Methods. Strasbourg, France (September 26–28, 2016)

    Google Scholar 

  24. Weihing, P., Meister, K., Schulz, C., Lutz, T., Krämer, E.: Cfd simulations on interference effects between offshore wind turbines. Journal of Physics: Conference Series 524(1), 12–143 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Ministry of Research, Technology and Higher Education of Indonesia, the AVATAR project and the HLRS computing center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Galih Bangga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bangga, G., Weihing, P., Lutz, T., Krämer, E. (2018). Hybrid RANS/LES Simulations of the Three-Dimensional Flow at Root Region of a 10 MW Wind Turbine Rotor. In: Dillmann, A., et al. New Results in Numerical and Experimental Fluid Mechanics XI. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 136. Springer, Cham. https://doi.org/10.1007/978-3-319-64519-3_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64519-3_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64518-6

  • Online ISBN: 978-3-319-64519-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics