Improving Fuzzy Searchable Encryption with Direct Bigram Embedding

  • Christian Göge
  • Tim Waage
  • Daniel Homann
  • Lena Wiese
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10442)

Abstract

In this paper we address the problem of fuzzy search over encrypted data that supports misspelled search terms. We advance prior work by using a bit vector for bigrams directly instead of hashing bigrams into a Bloom filter. We show that we improve both index building performance as well as retrieval ratio of matching documents while providing the same security guarantees. We also compare fuzzy searchable encryption with exact searchable encryption both in terms of security and performance.

Keywords

Searchable encryption Similarity search Fuzzy search Semantic security Locality sensitive hashing 

Notes

Acknowledgement

This work was partially funded by the DFG under grant number Wi 4086/2-2.

References

  1. 1.
    Boldyreva, A., Chenette, N.: Efficient fuzzy search on encrypted data. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 613–633. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46706-0_31 Google Scholar
  2. 2.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24676-3_30 CrossRefGoogle Scholar
  3. 3.
    Bösch, C., Hartel, P., Jonker, W., Peter, A.: A survey of provably secure searchable encryption. ACM Comput. Surv. (CSUR) 47(2), 18 (2015)Google Scholar
  4. 4.
    Chuah, M., Hu, W.: Privacy-aware bedtree based solution for fuzzy multi-keyword search over encrypted data. In: ICDCS, pp. 273–281. IEEE (2011)Google Scholar
  5. 5.
    Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. IACR Cryptology ePrint Archive 2006 (Rep. 210) (2006)Google Scholar
  6. 6.
    Debatty, T.: Java-LSH. https://github.com/tdebatty/java-LSH
  7. 7.
    Enron email dataset (2015). https://www.cs.cmu.edu/~./enron/
  8. 8.
    Fu, Z., Shu, J., Wang, J., Liu, Y., Lee, S.: Privacy-preserving smart similarity search based on simhash over encrypted data in cloud computing. J. Internet Technol. 16(3), 453–460 (1971)Google Scholar
  9. 9.
    Goh, E.J.: Secure indexes. IACR Cryptology ePrint Archive 2003 (Rep. 216) (2004)Google Scholar
  10. 10.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J. ACM (JACM) 43(3), 431–473 (1996)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Hu, C., Han, L.: Efficient wildcard search over encrypted data. Int. J. Inf. Sec. 15(5), 539–547 (2016)CrossRefGoogle Scholar
  12. 12.
    Kuzu, M., Islam, M.S., Kantarcioglu, M.: Efficient similarity search over encrypted data. In: Data Engineering (ICDE) 2012, pp. 1156–1167. IEEE (2012)Google Scholar
  13. 13.
    Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over encrypted data in cloud computing. In: INFOCOM, pp. 441–445. IEEE (2010)Google Scholar
  14. 14.
    Liu, C., Zhu, L., Li, L., Tan, Y.: Fuzzy keyword search on encrypted cloud storage data with small index. In: IEEE CCIS, pp. 269–273 (2011)Google Scholar
  15. 15.
    Rajaraman, A., Ullman, J.D., Lescovec, J.: Mining of Massive Datasets, vol. 1. Cambridge University Press, Cambridge (2010)Google Scholar
  16. 16.
    Schnell, R., Bachteler, T., Reiher, J.: Privacy-preserving record linkage using Bloom filters. BMC Med. Inform. Decis. Mak. 9(1), 41 (2009)CrossRefGoogle Scholar
  17. 17.
    Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted data. In: IEEE Symposium on Security and Privacy, pp. 44–55. IEEE (2000)Google Scholar
  18. 18.
    Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption with small leakage. In: NDSS, vol. 14, pp. 23–26 (2014)Google Scholar
  19. 19.
    Sun, W., Wang, B., Cao, N., Li, M., Lou, W., Hou, Y.T., Li, H.: Privacy-preserving multi-keyword text search in the cloud supporting similarity-based ranking. In: ACM SIGSAC, pp. 71–82. ACM (2013)Google Scholar
  20. 20.
    Waage, T., Jhajj, R.S., Wiese, L.: Searchable encryption in apache cassandra. In: Garcia-Alfaro, J., Kranakis, E., Bonfante, G. (eds.) FPS 2015. LNCS, vol. 9482, pp. 286–293. Springer, Cham (2016). doi:10.1007/978-3-319-30303-1_19 CrossRefGoogle Scholar
  21. 21.
    Wang, B., Yu, S., Lou, W., Hou, Y.T.: Privacy-preserving multi-keyword fuzzy search over encrypted data in the cloud. In: INFOCOM, pp. 2112–2120. IEEE (2014)Google Scholar
  22. 22.
    Wang, C., Ren, K., Yu, S., Urs, K.M.R.: Achieving usable and privacy-assured similarity search over outsourced cloud data. In: INFOCOM, pp. 451–459. IEEE (2012)Google Scholar
  23. 23.
    Yuan, X., Cui, H., Wang, X., Wang, C.: Enabling privacy-assured similarity retrieval over millions of encrypted records. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 40–60. Springer, Cham (2015). doi:10.1007/978-3-319-24177-7_3 CrossRefGoogle Scholar
  24. 24.
    Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the power of file-injection attacks on searchable encryption. In: USENIX, pp. 707–720 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Christian Göge
    • 1
  • Tim Waage
    • 1
  • Daniel Homann
    • 1
  • Lena Wiese
    • 1
  1. 1.Institut für InformatikGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations