F-SED: Feature-Centric Social Event Detection

  • Elio MansourEmail author
  • Gilbert Tekli
  • Philippe Arnould
  • Richard Chbeir
  • Yudith Cardinale
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10439)


In the context of social media, existent works offer social-event-based organization of multimedia objects (e.g., photos, videos) by mainly considering spatio-temporal data, while neglecting other user-related information (e.g., people, user interests). In this paper we propose an automated, extensible, and incremental Feature-centric Social Event Detection (F-SED) approach, based on Formal Concept Analysis (FCA), to organize shared multimedia objects on social media platforms and sharing applications. F-SED simultaneously considers various event features (e.g., temporal, geographical, social (user related)), and uses the latter to detect different feature-centric events (e.g., user-centric, location-centric). Our experimental results show that detection accuracy is improved when, besides spatio-temporal information, other features, such as social, are considered. We also show that the performance of our prototype is quasi-linear in most cases.


Social Event Detection Social networks Semantic clustering Multimedia sharing Formal Concept Analysis 


  1. 1.
    Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg (2006). doi: 10.1007/3-540-28349-8_2 CrossRefGoogle Scholar
  2. 2.
    Burmeister, P.: Formal concept analysis with ConImp: Introduction to the basic features. Technische Universität Darmstadt, Fachbereich Mathematik (2003)Google Scholar
  3. 3.
    Cao, L., et al.: Image annotation within the context of personal photo collections using hierarchical event and scene models. IEEE Trans. Multimedia 11(2), 208–219 (2009)CrossRefGoogle Scholar
  4. 4.
    Chen, L., Roy, A.: Event detection from flickr data through wavelet-based spatial analysis. In: Conference on Information and Knowledge Management, pp. 523–532 (2009)Google Scholar
  5. 5.
    Choi, V.: Faster algorithms for constructing a concept (Galois) lattice. CoRR abs/cs/0602069 (2006).
  6. 6.
    Cooper, M., et al.: Temporal event clustering for digital photo collections. ACM Trans. Multimedia Comput. Commun. Appl. 1(3), 269–288 (2005)CrossRefGoogle Scholar
  7. 7.
    Cui, J., et al.: EasyAlbum: an interactive photo annotation system based on face clustering and re-ranking. In: Conference on Human Factors in Computing Systems, pp. 367–376. ACM (2007)Google Scholar
  8. 8.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer Science & Business Media, Heidelberg (2012)zbMATHGoogle Scholar
  9. 9.
    Hanbury, A.: A survey of methods for image annotation. J. Vis. Lang. Comput. 19(5), 617–627 (2008)CrossRefGoogle Scholar
  10. 10.
    Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)CrossRefGoogle Scholar
  11. 11.
    Mei, T., et al.: Probabilistic multimodality fusion for event based home photo clustering. In: International Conference on Multimedia and Expo, pp. 1757–1760 (2006)Google Scholar
  12. 12.
    Oeldorf-Hirsch, A., Sundar, S.S.: Social and technological motivations for online photo sharing. J. Broadcast. Electron. Media 60(4), 624–642 (2016)CrossRefGoogle Scholar
  13. 13.
    Papadopoulos, S., et al.: Cluster-based landmark and event detection for tagged photo collections. IEEE MultiMedia 18(1), 52–63 (2011)CrossRefGoogle Scholar
  14. 14.
    Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Sig. Process. Mag. 20(3), 21–36 (2003)CrossRefGoogle Scholar
  15. 15.
    Quack, T., Leibe, B., Van Gool, L.: World-scale mining of objects and events from community photo collections. In: International Conference on Content-Based Image and Video Retrieval, pp. 47–56 (2008)Google Scholar
  16. 16.
    Raad, E.J., Chbeir, R.: Foto2events: from photos to event discovery and linking in online social networks. In: International Conference on Big Data and Cloud Computing, pp. 508–515. IEEE (2014)Google Scholar
  17. 17.
    Rehman, S.U., et al.: DBSCAN: past, present and future. In: International Conference on Applications of Digital Information and Web Technologies, pp. 232–238 (2014)Google Scholar
  18. 18.
    Reuter, T., et al.: ReSEED: social event detection dataset. In: Conference on Multimedia Systems, pp. 35–40. ACM (2014)Google Scholar
  19. 19.
    Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of International Conference on WWW, pp. 851–860. ACM (2010)Google Scholar
  20. 20.
    Sayyadi, H., et al.: Event detection and tracking in social streams. In: ICWSM (2009)Google Scholar
  21. 21.
    Sheba, S., Ramadoss, B., Balasundaram, S.R.: Event detection refinement using external tags for flickr collections. In: Mohapatra, D.P., Patnaik, S. (eds.) Intelligent Computing, Networking, and Informatics. AISC, vol. 243, pp. 369–375. Springer, New Delhi (2014). doi: 10.1007/978-81-322-1665-0_35 CrossRefGoogle Scholar
  22. 22.
    Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival, I. (ed.) Ordered Sets. NATO Advanced Study Institutes Series, vol. 83, pp. 445–470. Springer, Dordrecht (1982). doi: 10.1007/978-94-009-7798-3_15 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Elio Mansour
    • 1
    Email author
  • Gilbert Tekli
    • 3
  • Philippe Arnould
    • 1
  • Richard Chbeir
    • 2
  • Yudith Cardinale
    • 4
  1. 1.University Pau & Pays Adour, LIUPPA, EA3000Mont De MarsanFrance
  2. 2.University Pau & Pays Adour, LIUPPA, EA3000AngletFrance
  3. 3.University of BalamandSouk El GharebLebanon
  4. 4.Dept. de ComputaciónUniversidad Simón BolívarCaracasVenezuela

Personalised recommendations