A Graph Matching Based Method for Dynamic Passenger-Centered Ridesharing

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10438)

Abstract

Ridesharing is one transportation service deeply influenced by the prosperity of Mobile Internet. Existing work focuses on passenger-vehicle matching, which considers how to optimally dispatch passengers to appropriate vehicles. While dynamic passenger-passenger matching addresses how to optimally handle continually-arriving requests for ridesharing from passengers, without considering vehicles. It is a kind of dynamic passenger-centered ridesharing that has not been studied enough. This paper studies dynamic passenger-centered ridesharing with both temporal and cost constraints. We first propose a ridesharing request matching method based on maximum weighted matching on undirected weighted graphs, aiming to minimize the overall travel distance of targeting passengers. We then devise a distance indexing strategy to prune unnecessary calculations to accelerate ridesharing request matching and reduce request response time. Experiments on real-life road networks indicate that our method can successfully match 90% of ridesharing requests while saving 23% to 35% of travel distance.

Keywords

Intelligent transportation system Road networks Ridesharing Graph matching 

References

  1. 1.
    Agatz, N., Erera, A., Savelsbergh, M., Wang, X.: Optimization for dynamic ride-sharing: a review. Eur. J. Oper. Res. 223(2), 295–303 (2012)CrossRefMATHGoogle Scholar
  2. 2.
    Amey, A.: Proposed methodology for estimating rideshare viability within an organization: application to the mit community. In: Proceedings of Transportation Research Board Annual Meeting, pp. 1–16 (2011)Google Scholar
  3. 3.
    Attanasio, A., Cordeau, J.F., Ghiani, G., Laporte, G.: Parallel tabu search heuristics for the dynamic multi-vehicle dial-a-ride problem. Parallel Comput. 30(3), 377–387 (2004)CrossRefGoogle Scholar
  4. 4.
    Baldacci, R., Maniezzo, V., Mingozzi, A.: An exact method for the car pooling problem based on lagrangean column generation. Oper. Res. 52(3), 422–439 (2004)CrossRefMATHGoogle Scholar
  5. 5.
    Calvo, R.W., De Luigi, F., Haastrup, P., Maniezzo, V.: A distributed geographic information system for the daily car pooling problem. Comput. Oper. Res. 31(13), 2263–2278 (2004)CrossRefMATHGoogle Scholar
  6. 6.
    Cici, B., Markopoulou, A., Frias-Martinez, E., Laoutaris, N.: Assessing the potential of ride-sharing using mobile and social data: a tale of four cities. In: Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 201–211 (2014)Google Scholar
  7. 7.
    Donovan, B., Work, D.B.: Using coarse GPS data to quantify city-scale transportation system resilience to extreme events. Comput. Sci. (2015)Google Scholar
  8. 8.
    Duan, X., Jin, C., Wang, X., Zhou, A., Yue, K.: Real-time personalized taxi-sharing. In: Navathe, S.B., Wu, W., Shekhar, S., Du, X., Wang, X.S., Xiong, H. (eds.) DASFAA 2016. LNCS, vol. 9643, pp. 451–465. Springer, Cham (2016). doi:10.1007/978-3-319-32049-6_28 CrossRefGoogle Scholar
  9. 9.
    Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17(3), 361–379 (2009)MathSciNetGoogle Scholar
  10. 10.
    Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., Zhang, L.: IDMaps: a global internet host distance estimation service. IEEE/ACM Trans. Netw. 9(5), 525–540 (2001)CrossRefGoogle Scholar
  11. 11.
    Furuhata, M., Dessouky, M., Ordez, F., Brunet, M.E., Wang, X., Koenig, S.: Ridesharing: the state-of-the-art and future directions. Transp. Res. Part B Methodol. 57(57), 28–46 (2013)CrossRefGoogle Scholar
  12. 12.
    Galil, Z.: Efficient algorithms for finding maximum matching in graphs. ACM Comput. Surv. (CSUR) 18(1), 23–38 (1986)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Geisberger, R., Luxen, D., Neubauer, S., Sanders, P., Volker, L.: Fast detour computation for ride sharing. Comput. Sci. (2009)Google Scholar
  14. 14.
    Herbawi, W., Weber, M.: Evolutionary multiobjective route planning in dynamic multi-hop ridesharing. In: Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 84–95. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20364-0_8 CrossRefGoogle Scholar
  15. 15.
    Herbawi, W., Weber, M.: Modeling the multihop ridematching problem with time windows and solving it using genetic algorithms. In: Proceedings of the IEEE International Conference on Tools with Artificial Intelligence, pp. 89–96 (2012)Google Scholar
  16. 16.
    Herbawi, W., Weber, M.: The ridematching problem with time windows in dynamic ridesharing: a model and a genetic algorithm. In: Proceedings of the ACM Genetic and Evolutionary Computation Conference, pp. 1–8 (2012)Google Scholar
  17. 17.
    Ma, S., Zheng, Y., Wolfson, O.: T-share: a large-scale dynamic taxi ridesharing service. In: Proceedings of the IEEE International Conference on Data Engineering, pp. 410–421 (2013)Google Scholar
  18. 18.
    Potamias, M., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path distance estimation in large networks. In: Proceedings of the ACM Conference on Information and Knowledge Management, pp. 867–876 (2009)Google Scholar
  19. 19.
    Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient models for timetable information in public transportation systems. J. Exp. Algorithmics 12(1), 2–4 (2008)MathSciNetMATHGoogle Scholar
  20. 20.
    Qiao, M., Cheng, H., Chang, L., Yu, J.X.: Approximate shortest distance computing: a query-dependent local landmark scheme. IEEE Trans. Knowl. Data Eng. 26(1), 55–68 (2013)CrossRefGoogle Scholar
  21. 21.
    Qiao, M., Cheng, H., Yu, J.X.: Querying shortest path distance with bounded errors in large graphs. In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 255–273. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22351-8_16 CrossRefGoogle Scholar
  22. 22.
    Santos, D.O., Xavier, E.C.: Dynamic taxi and ridesharing: a framework and heuristics for the optimization problem. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 2885–2891 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jia Shi
    • 1
  • Yifeng Luo
    • 1
  • Shuigeng Zhou
    • 1
  • Jihong Guan
    • 2
  1. 1.School of Computer Science, and Shanghai Key Lab of Intelligent Information ProcessingFudan UniversityShanghaiChina
  2. 2.Department of Computer Science and TechnologyTongji UniversityShanghaiChina

Personalised recommendations