Representing and Learning Human Behavior Patterns with Contextual Variability

  • Paula Lago
  • Claudia Roncancio
  • Claudia Jiménez-Guarín
  • Cyril Labbé
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10438)

Abstract

For Smart Environments used for elder care, learning the inhabitant’s behavior patterns is fundamental to detect changes since these can signal health deterioration. A precise model needs to consider variations implied by the fact that human behavior has an stochastic nature and is affected by context conditions. In this paper, we model behavior patterns as usual activity start times. We introduce a Frequent Pattern Mining algorithm to estimate probable start times and their variations due to context conditions using only one single scan of the activity data stream. Experimentation using the Aruba CASAS and the ContextAct@A4H datasets and comparison with a Gaussian Mixture Model show our proposition provides adequate results for smart home environments domains with a lower computational time complexity. This allows the evaluation of behavior variations at different context dimensions and varied granularity levels for each of them.

References

  1. 1.
    Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C 42(6), 790–808 (2012)CrossRefGoogle Scholar
  2. 2.
    Cook, D., Crandall, A., Thomas, B., Krishnan, N.: CASAS: a smart home in a box. IEEE Comput. 46(7), 62–69 (2013)CrossRefGoogle Scholar
  3. 3.
    Dawadi, P.N., Cook, D.J., Schmitter-Edgecombe, M.: Modeling patterns of activities using activity curves. Pervasive Mob. Comput. 28, 51–68 (2015)CrossRefGoogle Scholar
  4. 4.
    Rodríguez, N.D., Cuéllar, M., Lilius, J., et al.: A survey on ontologies for human behavior recognition. ACM Comput. Surv. 46(4), 43:1–43:33 (2014)CrossRefGoogle Scholar
  5. 5.
    Forkan, A., et al.: A context-aware approach for long-term behavioural change detection and abnormality prediction in AAL. Pattern Recognit. 48(3), 628–641 (2015)CrossRefGoogle Scholar
  6. 6.
    Jakkula, V.R., Crandall, A.S., Cook, D.J.: Enhancing anomaly detection using temporal pattern discovery. In: Kameas, A., Callagan, V., Hagras, H., Weber, M., Minker, W. (eds.) Advanced Intelligent Environments, pp. 175–194. Springer, Heidelberg (2009). doi:10.1007/978-0-387-76485-6_8 CrossRefGoogle Scholar
  7. 7.
    Lago, P., Lang, F., Roncancio, C., Jiménez-Guarín, C., Mateescu, R., Bonnefond, N.: The ContextAct@A4H real-life dataset of daily-living activities. In: Brézillon, P., Turner, R., Penco, C. (eds.) CONTEXT 2017. LNCS, vol. 10257, pp. 175–188. Springer, Cham (2017). doi:10.1007/978-3-319-57837-8_14 CrossRefGoogle Scholar
  8. 8.
    Lago, P., Jiménez-Guarín, C., Roncancio, C.: A case study on the analysis of behavior patterns and pattern changes in smart environments. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 296–303. Springer, Cham (2014). doi:10.1007/978-3-319-13105-4_43 Google Scholar
  9. 9.
    Monekosso, D.N., Remagnino, P.: Behavior analysis for assisted living. IEEE Trans. Autom. Sci. Eng. 7(4), 879–886 (2010)CrossRefGoogle Scholar
  10. 10.
    Moshtaghi, M., Zukerman, I., Russell, R.A.: Statistical models for unobtrusively detecting abnormal periods of inactivity in older adults. User Model. User-Adap. 25(3), 231–265 (2015)CrossRefGoogle Scholar
  11. 11.
    Nait Aicha, A., Englebienne, G., Kröse, B.: Unsupervised visit detection in smart homes. Pervasive Mob. Comput. 34, 157–167 (2016)CrossRefGoogle Scholar
  12. 12.
    Rabatel, J., Bringay, S., Poncelet, P.: Contextual sequential pattern mining. In: 2010 IEEE ICDM Workshops, pp. 981–988 (2010)Google Scholar
  13. 13.
    Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Soulas, J., Lenca, P., Thépaut, A.: Unsupervised discovery of activities of daily living characterized by their periodicity and variability. Eng. Appl. Artif. Intell. 45, 90–102 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Paula Lago
    • 1
  • Claudia Roncancio
    • 2
  • Claudia Jiménez-Guarín
    • 1
  • Cyril Labbé
    • 2
  1. 1.Universidad de Los AndesBogotáColombia
  2. 2.Univ. of Grenoble Alpes, CNRS, Grenoble INP, LIGGrenobleFrance

Personalised recommendations