Advertisement

Benefits of Neuromarketing in the Product/Service Innovation Process and Creative Marketing Campaign

  • Jyrki Suomala
Chapter

Abstract

Most of the neuroscientific studies try to find neural correlations between specific stimuli and brain circuits’ activation patterns. However, the brain-as-prediction approach tries to find brain circuits’ activation patterns during persuasive messages, which predict human behaviour in the future situations.

The chapter describes the brain valuation circuits, whose activation pattern has been found critical for the prediction of human behaviour in the future. In addition, the most common examples about the brain’s valuation system will be presented from management point of view.

Whereas the academic community has produced a lot of research with neuroscientific tools, there is still a lot of room for applications of neuroscience to the innovation and marketing campaign processes. Thus, the chapter describes different stakeholders who can cooperate in order to find optimal products and optimal marketing campaign by using neuromarketing. Because the innovation process includes much uncertainty, it is very critical to encourage all participants to collaborate in the process. The chapter describes the benefits of this collaboration from management point of view. In addition, the concrete examples of how researchers and business innovators together can apply the neuromarketing in order to solve concrete innovation and management problems will be presented. Finally, the future’s opportunities of neuromarketing in innovation processes will be presented.

Keywords

Neuroscience Neuromarketing Innovation Idea generation Prediction 

References

  1. Ariely, D., & Berns, G. S. (2010). Neuromarketing: The Hope and Hype of Neuroimaging in Business. Nature Reviews. Neuroscience, 11(4), 284–292. https://doi.org/10.1038/nrn2795.CrossRefGoogle Scholar
  2. Ashby, F. G. (2011). Statistical Analysis of fMRI Data. Cambridge, MA: MIT Press.Google Scholar
  3. Bazerman, M. H. (2006). Judgment in Managerial Decision Making (6th ed.). Hoboken: J. Wiley.Google Scholar
  4. Berkman, E. T., & Falk, E. B. (2013). Beyond Brain Mapping Using Neural Measures to Predict Real-World Outcomes. Current Directions in Psychological Science, 22(1), 45–50. https://doi.org/10.1177/0963721412469394.CrossRefGoogle Scholar
  5. Berns, G. S., & Moore, S. E. (2012). A Neural Predictor of Cultural Popularity. Journal of Consumer Psychology, 22(1), 154–160. https://doi.org/10.1016/j.jcps.2011.05.001.CrossRefGoogle Scholar
  6. Boksem, M. A. S., & Smidts, A. (2015). Brain Responses to Movie Trailers Predict Individual Preferences for Movies and Their Population-Wide Commercial Success. Journal of Marketing Research, 52(4), 482–492. https://doi.org/10.1509/jmr.13.0572.CrossRefGoogle Scholar
  7. Bridger, D. (2015). Decoding the Irrational Consumer: How to Commission, Run and Generate Insights from Neuromarketing Research (Marketing Science Series). London/Philadelphia: Kogan Page.Google Scholar
  8. Cascio, C. N., Cin, S. D., & Falk, E. B. (2013). Health Communications: Predicting Behavior Change from the Brain. In P. A. Hall (Ed.), Social Neuroscience and Public Health (pp. 57–71). New York: Springer New York. http://link.springer.com/10.1007/978-1-4614-6852-3_4
  9. Chib, V. S., Rangel, A., Shimojo, S., & O’Doherty, J. P. (2009). Evidence for a Common Representation of Decision Values for Dissimilar Goods in Human Ventromedial Prefrontal Cortex. The Journal of Neuroscience, 29(39), 12315–12320. https://doi.org/10.1523/JNEUROSCI.2575-09.2009.CrossRefGoogle Scholar
  10. De Munnik, M., & Leij, A. V. (2016). Measure Valued Brand Associations. Presented at the Neuromarketing World Forum, Dubai, April 4–6.Google Scholar
  11. Dijksterhuis, A., Bos, M. W., Nordgren, L. F., & van Baaren, R. B. (2006). On Making the Right Choice: The Deliberation-Without-Attention Effect. Science, 311(5763), 1005–1007. https://doi.org/10.1126/science.1121629.CrossRefGoogle Scholar
  12. Falk, E. B., Berkman, E. T., Mann, T., Harrison, B., & Lieberman, M. D. (2010). Predicting Persuasion-Induced Behavior Change from the Brain. The Journal of Neuroscience, 30(25), 8421–8424. https://doi.org/10.1523/JNEUROSCI.0063-10.2010.CrossRefGoogle Scholar
  13. Falk, E. B., Berkman, E. T., Whalen, D., & Lieberman, M. D. (2011). Neural Activity During Health Messaging Predicts Reductions in Smoking Above and Beyond Self-Report. Health Psychology: Official Journal of the Division of Health Psychology, American Psychological Association, 30(2), 177–185. https://doi.org/10.1037/a0022259.CrossRefGoogle Scholar
  14. Falk, E. B., Berkman, E. T., & Lieberman, M. D. (2012). From Neural Responses to Population Behavior Neural Focus Group Predicts Population-Level Media Effects. Psychological Science, 23(5), 439–445. https://doi.org/10.1177/0956797611434964.CrossRefGoogle Scholar
  15. Falk, E. B., Hyde, L. W., Mitchell, C., Faul, J., Gonzalez, R., Heitzeg, M. M., Keating, D. P., et al. (2013a). What Is a Representative Brain? Neuroscience Meets Population Science. Proceedings of the National Academy of Sciences of the United States of America, 110(44), 17615–17622. https://doi.org/10.1073/pnas.1310134110.CrossRefGoogle Scholar
  16. Falk, E. B., Morelli, S. A., Locke Welborn, B., Dambacher, K., & Lieberman, M. D. (2013b). Creating Buzz the Neural Correlates of Effective Message Propagation. Psychological Science, 24(7), 1234–1242. https://doi.org/10.1177/0956797612474670.CrossRefGoogle Scholar
  17. Falk, E. B., O’Donnell, M. B., Tompson, S., Gonzalez, R., Cin, S. D., Strecher, V., Cummings, K. M., & An, L. (2015). Functional Brain Imaging Predicts Public Health Campaign Success. Social Cognitive and Affective Neuroscience, nsv108. doi:https://doi.org/10.1093/scan/nsv108.
  18. Falk, E. B., O’Donnell, M. B., Tompson, S., Gonzalez, R., Cin, S. D., Strecher, V., Cummings, K. M., & An, L. (2016). Functional Brain Imaging Predicts Public Health Campaign Success. Social Cognitive and Affective Neuroscience, 11(2), 204–214. https://doi.org/10.1093/scan/nsv108.CrossRefGoogle Scholar
  19. Galloway, S. (2016). Death of the Industrial Advertising Complex. https://www.youtube.com/watch?v=yOpSpQAxCHU
  20. Genco, S. J., Pohlmann, A. P., & Steidl, P. (2013). Neuromarketing for Dummies. Mississauga: Wiley.Google Scholar
  21. Glimcher, P. W. (2011). Foundations of Neuroeconomic Analysis. New York: Oxford University Press.Google Scholar
  22. Glimcher, P. W., & Fehr, E. (2013). Neuroeconomics: Decision Making and the Brain. London: Academic Press.Google Scholar
  23. Hare, T. A., Camerer, C. F., Knoepfle, D. T., O’Doherty, J. P., & Rangel, A. (2010). Value Computations in Ventral Medial Prefrontal Cortex During Charitable Decision Making Incorporate Input from Regions Involved in Social Cognition. The Journal of Neuroscience, 30(2), 583–590. https://doi.org/10.1523/JNEUROSCI.4089-09.2010.CrossRefGoogle Scholar
  24. Hawkins, J., & Ahmad, S. (2016). Why Neurons Have Thousands of Synapses, a Theory of Sequence Memory in Neocortex. Frontiers in Neural Circuits, 10(March). https://doi.org/10.3389/fncir.2016.00023.
  25. Heinonen, J., Numminen, J., Hlushchuk, Y., Antell, H., Taatila, V., & Suomala, J. (2016). Default Mode and Executive Networks Areas: Association with the Serial Order in Divergent Thinking (E. A. Stamatakis, Ed.). PLOS ONE, 11(9), e0162234. doi:https://doi.org/10.1371/journal.pone.0162234.
  26. Hytönen, K., Sanfey, A. G., Cochran, J. J., Cox, L. A., Keskinocak, P., Kharoufeh, J. P., & Smith, C. (2010). Neuroeconomics Insights for Decision Analysis. In Wiley Encyclopedia of Operations Research and Management Science. Wiley. http://onlinelibrary.wiley.com/doi/10.1002/9780470400531.eorms0567/abstract
  27. Hytönen, K., Heinonen, J., Maunula, S., Minkkinen, L., & Suomala, J. (2016). Behavioral and Neural Preference Signals of Architectural Design. In Poster Presentation in Neuroeconomics Conference, Berlin, August 28–30. Google Scholar
  28. Isaacson, W. (2011). Steve Jobs. New York: Simon & Schuster.Google Scholar
  29. Iyengar, S. (2011). The Art of Choosing (Reprint Ed.) New York: Twelve.Google Scholar
  30. Jetter, A. J. (2003). Educating the Guess: Strategies, Concepts and Tools for the Fuzzy Front End of Product Development. In Proceedings of PICMET 2003: Technology Management for Reshaping the World, Portland.Google Scholar
  31. Klucharev, V., Hytönen, K., Rijpkema, M., Smidts, A., & Fernández, G. (2009). Reinforcement Learning Signal Predicts Social Conformity. Neuron, 61(1), 140–151. https://doi.org/10.1016/j.neuron.2008.11.027.CrossRefGoogle Scholar
  32. Levy, D. J., & Glimcher, P. W. (2012). The Root of All Value: A Neural Common Currency for Choice. Current Opinion in Neurobiology, 22(6), 1027–1038. https://doi.org/10.1016/j.conb.2012.06.001.CrossRefGoogle Scholar
  33. Lim, S.-L., O’Doherty, J. P., & Rangel, A. (2013). Stimulus Value Signals in Ventromedial PFC Reflect the Integration of Attribute Value Signals Computed in Fusiform Gyrus and Posterior Superior Temporal Gyrus. The Journal of Neuroscience, 33(20), 8729–8741. https://doi.org/10.1523/JNEUROSCI.4809-12.2013.CrossRefGoogle Scholar
  34. Limb, C. J., & Braun, A. R. (2008). Neural Substrates of Spontaneous Musical Performance: An fMRI Study of Jazz Improvisation. PLOS ONE, 3(2), 1–9. https://doi.org/10.1371/journal.pone.0001679.CrossRefGoogle Scholar
  35. McNamee, D., Rangel, A., & O’Doherty, J. P. (2013). Category-Dependent and Category-Independent Goal-Value Codes in Human Ventromedial Prefrontal Cortex. Nature Neuroscience, 16(4), 479–485. https://doi.org/10.1038/nn.3337.CrossRefGoogle Scholar
  36. Noble, T., & Reid, A. (2016). Design Optimizing Using Neuroscience. Presented at the Neuromarketing World Forum, Dubai, April 4–6.Google Scholar
  37. Plassmann, H., O’Doherty, J., Shiv, B., & Rangel, A. (2008). Marketing Actions Can Modulate Neural Representations of Experienced Pleasantness. Proceedings of the National Academy of Sciences, 105(3), 1050–1054. https://doi.org/10.1073/pnas.0706929105.CrossRefGoogle Scholar
  38. Rangel, A., Camerer, C., & Read Montague, P. (2008). A Framework for Studying the Neurobiology of Value-Based Decision Making. Nature Reviews. Neuroscience, 9(7), 545–556. https://doi.org/10.1038/nrn2357.CrossRefGoogle Scholar
  39. Santonen, T., & Hytönen, K. (2015). Managing Human Factor at the Fuzzy Front-End of Innovation. In Changing the Innovation Landscape. Proceedings of the ISPIM Innovation Summit, Brisbane.Google Scholar
  40. Silver, N. (2015). The Signal and the Noise: Why So Many Predictions Fail – But Some Don’t. New York: Penguin Books.Google Scholar
  41. Smith, M. (2016). Reproducibility and Predictive Validity in Consumer Neuroscience. Presented at the Neuromarketing World Forum, Dubai, April 4–6.Google Scholar
  42. Stephens, G. J., Silbert, L. J., & Hasson, U. (2010). Speaker-Listener Neural Coupling Underlies Successful Communication. Proceedings of the National Academy of Sciences, 107(32), 14425–14430. https://doi.org/10.1073/pnas.1008662107.CrossRefGoogle Scholar
  43. Suomala, J., Taatila, V., Siltala, R., & Keskinen, S. (2006). Chance Discovery as a First Step to Economic Innovation. In Proceedings of the CogSci 2006, 28th Annual Conference of the Cognitive Science Society in Cooperation with the 5th International Conference of the Cognitive Science (pp. 2204–2209), Lawrence Erlbaum Ass, Vancouver, July 26–29.Google Scholar
  44. Suomala, J., Palokangas, L., Leminen, S., Westerlund, M., Heinonen, J., & Numminen, J. (2012). Neuromarketing: Understanding Customers’ Subconscious Responses to Marketing. Technology Innovation Management Review, 2: Recent Research, 12–21.Google Scholar
  45. Taatila, V. P., Suomala, J., Siltala, R., & Keskinen, S. (2006). Framework to Study the Social Innovation Networks. European Journal of Innovation Management, 9(3), 312–326. https://doi.org/10.1108/14601060610678176.CrossRefGoogle Scholar
  46. Venkatraman, V., Clithero, J. A., Fitzsimons, G. J., & Huettel, S. A. (2012). New Scanner Data for Brand Marketers: How Neuroscience Can Help Better Understand Differences in Brand Preferences. Journal of Consumer Psychology, 22(1), 143–153. https://doi.org/10.1016/j.jcps.2011.11.008.CrossRefGoogle Scholar
  47. Venkatraman, V., Dimoka, A., Pavlou, P. A., Vo, K., Hampton, W., Bollinger, B., Hershfield, H. E., Ishihara, M., & Winer, R. S. (2015). Predicting Advertising Success Beyond Traditional Measures: New Insights from Neurophysiological Methods and Market Response Modeling. Journal of Marketing Research, 52(4), 436–452. https://doi.org/10.1509/jmr.13.0593.CrossRefGoogle Scholar
  48. Weber, R., Richard, H., Michael Mangus, J., Westcott-Baker, A., & Turner, B. O. (2015). Neural Predictors of Message Effectiveness During Counterarguing in Antidrug Campaigns. Communication Monographs, 82(1), 4–30. https://doi.org/10.1080/03637751.2014.971414.CrossRefGoogle Scholar
  49. Zurawicki, L. (2010). Neuromarketing. Berlin/Heidelberg: Springer Berlin Heidelberg. http://link.springer.com/10.1007/978-3-540-77829-5

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Jyrki Suomala
    • 1
  1. 1.Laurea University of Applied Sciences, NeuroLabVantaaFinland

Personalised recommendations