Advertisement

Mycobacterium tuberculosis Complex Members Adapted to Wild and Domestic Animals

  • Kerri M. Malone
  • Stephen V. Gordon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1019)

Abstract

The Mycobacterium tuberculosis complex (MTBC) is composed of several highly genetically related species that can be broadly classified into those that are human-host adapted and those that possess the ability to propagate and transmit in a variety of wild and domesticated animals. Since the initial description of the bovine tubercle bacillus, now known as Mycobacterium bovis, by Theobald Smith in the late 1800’s, isolates originating from a wide range of animal hosts have been identified and characterized as M. microti, M. pinnipedii, the Dassie bacillus, M. mungi, M. caprae, M. orygis and M. suricattae. This chapter outlines the events resulting in the identification of each of these animal-adapted species, their close genetic relationships, and how genome-based phylogenetic analyses of species-specific variation amongst MTBC members is beginning to unravel the events that resulted in the evolution of the MTBC and the observed host tropism between the human- and animal-adapted member species.

Keywords

Mycobacterium tuberculosis complex MTBC Mycobacterium bovis Host adaptation Animal-adapted species One Health 

References

  1. Abernethy DA, Upton P, Higgins IM, McGrath G, Goodchild AV, Rolfe SJ, Broughan JM, Downs SH, Clifton-Hadley R, Menzies FD, De La Rua-Domenech R, Blissitt MJ, Duignan A, More SJ (2013) Bovine tuberculosis trends in the UK and the Republic of Ireland, 1995–2010. Vet Rec 172:312PubMedCrossRefGoogle Scholar
  2. Ahmad S, El-Shazly S, Mustafa AS, Al-Attiyah R (2005) The six mammalian cell entry proteins (Mce3A-F) encoded by the mce3 operon are expressed during in vitro growth of Mycobacterium tuberculosis. Scand J Immunol 62:16–24PubMedCrossRefGoogle Scholar
  3. Alexander KA, Laver PN, Michel AL, Williams M, Van Helden PD, Warren RM, Gey Van Pittius NC (2010) Novel Mycobacterium tuberculosis complex pathogen, M. mungi. Emerg Infect Dis 16:1296–1299PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alexander KA, Sanderson CE, Larsen MH, Robbe-Austerman S, Williams MC, Palmer MV (2016) Emerging tuberculosis pathogen hijacks social communication behavior in the group-living banded mongoose (Mungos mungo). MBio 7Google Scholar
  5. Ameni G, Tadesse K, Hailu E, Deresse Y, Medhin G, Aseffa A, Hewinson G, Vordermeier M, Berg S (2013) Transmission of Mycobacterium tuberculosis between farmers and cattle in central Ethiopia. PLoS One 8:e76891PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aranaz A, Liebana E, Mateos A, Dominguez L, Vidal D, Domingo M, Gonzolez O, Rodriguez-Ferri EF, Bunschoten AE, Van Embden JD, Cousins D (1996) Spacer oligonucleotide typing of Mycobacterium bovis strains from cattle and other animals: a tool for studying epidemiology of tuberculosis. J Clin Microbiol 34:2734–2740PubMedPubMedCentralGoogle Scholar
  7. Aranaz A, Liebana E, Gomez-Mampaso E, Galan JC, Cousins D, Ortega A, Blazquez J, Baquero F, Mateos A, Suarez G, Dominguez L (1999) Mycobacterium tuberculosis subsp. caprae subsp. nov.: a taxonomic study of a new member of the Mycobacterium tuberculosis complex isolated from goats in Spain. Int J Syst Bacteriol 49(Pt 3):1263–1273PubMedCrossRefGoogle Scholar
  8. Aranaz A, Cousins D, Mateos A, Dominguez L (2003) Elevation of Mycobacterium tuberculosis subsp. caprae Aranaz et al. 1999 to species rank as Mycobacterium caprae comb. nov., sp. nov. Int J Syst Evol Microbiol 53:1785–1789PubMedCrossRefGoogle Scholar
  9. Arbues A, Lugo-Villarino G, Neyrolles O, Guilhot C, Astarie-Dequeker C (2014) Playing hide-and-seek with host macrophages through the use of mycobacterial cell envelope phthiocerol dimycocerosates and phenolic glycolipids. Front Cell Infect Microbiol 4:173PubMedPubMedCentralCrossRefGoogle Scholar
  10. Av-Gay Y, Everett M (2000) The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol 8:238–244PubMedCrossRefGoogle Scholar
  11. Barker C (2015) In: Department for Environment, F. A. R. A (eds) Bovine TB statistics: Great Britain. House of Commons Library, LondonGoogle Scholar
  12. Berg S, Firdessa R, Habtamu M, Gadisa E, Mengistu A, Yamuah L, Ameni G, Vordermeier M, Robertson BD, Smith NH, Engers H, Young D, Hewinson RG, Aseffa A, Gordon SV (2009) The burden of mycobacterial disease in ethiopian cattle: implications for public health. PLoS One 4:e5068PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bigi F, Garcia-Pelayo MC, Nunez-Garcia J, Peralta A, Caimi KC, Golby P, Hinds J, Cataldi A, Gordon SV, Romano MI (2005) Identification of genetic markers for Mycobacterium pinnipedii through genome analysis. FEMS Microbiol Lett 248:147–152PubMedCrossRefGoogle Scholar
  14. Boardman WS, Shephard L, Bastian I, Globan M, Fyfe JA, Cousins DV, Machado A, Woolford L (2014) Mycobacterium pinnipedii tuberculosis in a free-ranging Australian fur seal (Arctocephalus pusillus doriferus) in South Australia. J Zoo Wildl Med 45:970–972PubMedCrossRefGoogle Scholar
  15. Bos KI, Harkins KM, Herbig A, Coscolla M, Weber N, Comas I, Forrest SA, Bryant JM, Harris SR, Schuenemann VJ, Campbell TJ, Majander K, Wilbur AK, Guichon RA, Wolfe Steadman DL, Cook DC, Niemann S, Behr MA, Zumarraga M, Bastida R, Huson D, Nieselt K, Young D, Parkhill J, Buikstra JE, Gagneux S, Stone AC, Krause J (2014) Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514:494–497PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brodin P, Eiglmeier K, Marmiesse M, Billault A, Garnier T, Niemann S, Cole ST, Brosch R (2002) Bacterial artificial chromosome-based comparative genomic analysis identifies Mycobacterium microti as a natural ESAT-6 deletion mutant. Infect Immun 70:5568–5578PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brodin P, Poquet Y, Levillain F, Peguillet I, Larrouy-Maumus G, Gilleron M, Ewann F, Christophe T, Fenistein D, Jang J, Jang MS, Park SJ, Rauzier J, Carralot JP, Shrimpton R, Genovesio A, Gonzalo-Asensio JA, Puzo G, Martin C, Brosch R, Stewart GR, Gicquel B, Neyrolles O (2010) High content phenotypic cell-based visual screen identifies Mycobacterium tuberculosis acyltrehalose-containing glycolipids involved in phagosome remodeling. PLoS Pathog 6:e1001100PubMedPubMedCentralCrossRefGoogle Scholar
  18. Brosch R, Gordon SV, Billault A, Garnier T, Eiglmeier K, Soravito C, Barrell BG, Cole ST (1998) Use of a Mycobacterium tuberculosis H37Rv bacterial artificial chromosome library for genome mapping, sequencing, and comparative genomics. Infect Immun 66:2221–2229PubMedPubMedCentralGoogle Scholar
  19. Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, Parsons LM, Pym AS, Samper S, Van Soolingen D, Cole ST (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci U S A 99:3684–3689PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brossier F, Sougakoff W, Bernard C, Petrou M, Adeyema K, Pham A, Amy De La Breteque D, Vallet M, Jarlier V, Sola C, Veziris N (2015) Molecular analysis of the embCAB Locus and embR gene involved in ethambutol resistance in clinical isolates of Mycobacterium tuberculosis in France. Antimicrob Agents Chemother 59:4800–4808PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cadmus S, Palmer S, Okker M, Dale J, Gover K, Smith N, Jahans K, Hewinson RG, Gordon SV (2006) Molecular analysis of human and bovine tubercle bacilli from a local setting in Nigeria. J Clin Microbiol 44:29–34PubMedPubMedCentralCrossRefGoogle Scholar
  22. Cambier CJ, Takaki KK, Larson RP, Hernandez RE, Tobin DM, Urdahl KB, Cosma CL, Ramakrishnan L (2014) Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 505:218–222PubMedCrossRefGoogle Scholar
  23. Cavanagh R, Begon M, Bennett M, Ergon T, Graham IM, De Haas PE, Hart CA, Koedam M, Kremer K, Lambin X, Roholl P, Soolingen DV, D. (2002) Mycobacterium microti infection (vole tuberculosis) in wild rodent populations. J Clin Microbiol 40:3281–3285PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chambers MA, Rogers F, Delahay RJ, Lesellier S, Ashford R, Dalley D, Gowtage S, Dave D, Palmer S, Brewer J, Crawshaw T, Clifton-Hadley R, Carter S, Cheeseman C, Hanks C, Murray A, Palphramand K, Pietravalle S, Smith GC, Tomlinson A, Walker NJ, Wilson GJ, Corner LA, Rushton SP, Shirley MD, Gettinby G, McDonald RA, Hewinson RG (2011) Bacillus Calmette-Guerin vaccination reduces the severity and progression of tuberculosis in badgers. Proc Biol Sci 278:1913–1920PubMedCrossRefGoogle Scholar
  25. Chao J, Wong D, Zheng X, Poirier V, Bach H, Hmama Z, Av-Gay Y (2010) Protein kinase and phosphatase signaling in Mycobacterium tuberculosis physiology and pathogenesis. Biochim Biophys Acta 1804:620–627PubMedCrossRefGoogle Scholar
  26. Charlet D, Mostowy S, Alexander D, Sit L, Wiker HG, Behr MA (2005) Reduced expression of antigenic proteins MPB70 and MPB83 in Mycobacterium bovis BCG strains due to a start codon mutation in sigK. Mol Microbiol 56:1302–1313PubMedCrossRefGoogle Scholar
  27. Chen Y, Chao Y, Deng Q, Liu T, Xiang J, Chen J, Zhou J, Zhan Z, Kuang Y, Cai H, Chen H, Guo A (2009) Potential challenges to the stop TB plan for humans in China; cattle maintain M. bovis and M. tuberculosis. Tuberculosis (Edinb) 89:95–100CrossRefGoogle Scholar
  28. Chiari M, Zanoni M, Alborali LG, Zanardi G, Avisani D, Tagliabue S, Gaffuri A, Pacciarini ML, Boniotti MB (2014) Isolation of Mycobacterium caprae (Lechtal genotype) from red deer (Cervus elaphus) in Italy. J Wildl Dis 50:330–333PubMedCrossRefGoogle Scholar
  29. Cohan FM (2002) What are bacterial species? Annu Rev Microbiol 56:457–487PubMedCrossRefGoogle Scholar
  30. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, Mclean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544PubMedCrossRefGoogle Scholar
  31. Converse SE, Mougous JD, Leavell MD, Leary JA, Bertozzi CR, Cox JS (2003) MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci U S A 100:6121–6126PubMedPubMedCentralCrossRefGoogle Scholar
  32. Corner LA, Costello E, Lesellier S, O’meara D, Sleeman DP, Gormley E (2007) Experimental tuberculosis in the European badger (Meles meles) after endobronchial inoculation of Mycobacterium bovis: I. Pathology and bacteriology. Res Vet Sci 83:53–62PubMedCrossRefGoogle Scholar
  33. Corner LA, Costello E, Lesellier S, O’meara D, Gormley E (2008) Vaccination of European badgers (Meles meles) with BCG by the subcutaneous and mucosal routes induces protective immunity against endobronchial challenge with Mycobacterium bovis. Tuberculosis (Edinb) 88:601–609CrossRefGoogle Scholar
  34. Corner LA, Costello E, O'meara D, Lesellier S, Aldwell FE, Singh M, Hewinson RG, Chambers MA, Gormley E (2010) Oral vaccination of badgers (Meles meles) with BCG and protective immunity against endobronchial challenge with Mycobacterium bovis. Vaccine 28:6265–6272PubMedCrossRefGoogle Scholar
  35. Corner LA, O’meara D, Costello E, Lesellier S, Gormley E (2012) The distribution of Mycobacterium bovis infection in naturally infected badgers. Vet J 194:166–172PubMedCrossRefGoogle Scholar
  36. Coscolla M, Lewin A, Metzger S, Maetz-Rennsing K, Calvignac-Spencer S, Nitsche A, Dabrowski PW, Radonic A, Niemann S, Parkhill J, Couacy-Hymann E, Feldman J, Comas I, Boesch C, Gagneux S, Leendertz FH (2013) Novel Mycobacterium tuberculosis complex isolate from a wild chimpanzee. Emerg Infect Dis 19:969–976PubMedPubMedCentralCrossRefGoogle Scholar
  37. Cousins DV, Williams SN, Reuter R, Forshaw D, Chadwick B, Coughran D, Collins P, Gales N (1993) Tuberculosis in wild seals and characterisation of the seal bacillus. Aust Vet J 70:92–97PubMedCrossRefGoogle Scholar
  38. Cousins DV, Peet RL, Gaynor WT, Williams SN, Gow BL (1994) Tuberculosis in imported hyrax (Procavia capensis) caused by an unusual variant belonging to the Mycobacterium tuberculosis complex. Vet Microbiol 42:135–145PubMedCrossRefGoogle Scholar
  39. Cousins DV, Bastida R, Cataldi A, Quse V, Redrobe S, Dow S, Duignan P, Murray A, Dupont C, Ahmed N, Collins DM, Butler WR, Dawson D, Rodriguez D, Loureiro J, Romano MI, Alito A, Zumarraga M, Bernardelli A (2003) Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex: Mycobacterium pinnipedii sp. nov. Int J Syst Evol Microbiol 53:1305–1314PubMedCrossRefGoogle Scholar
  40. Cvetnic Z, Katalinic-Jankovic V, Sostaric B, Spicic S, Obrovac M, Marjanovic S, Benic M, Kirin BK, Vickovic I (2007) Mycobacterium caprae in cattle and humans in Croatia. Int J Tuberc Lung Dis 11:652–658PubMedGoogle Scholar
  41. Day TA, Mittler JE, Nixon MR, Thompson C, Miner MD, Hickey MJ, Liao RP, Pang JM, Shayakhmetov DM, Sherman DR (2014) Mycobacterium tuberculosis strains lacking surface lipid phthiocerol dimycocerosate are susceptible to killing by an early innate host response. Infect Immun 82:5214–5222PubMedPubMedCentralCrossRefGoogle Scholar
  42. De Garine-Wichatitsky M, Caron A, Kock R, Tschopp R, Munyeme M, Hofmeyr M, Michel A (2013) A review of bovine tuberculosis at the wildlife-livestock-human interface in sub-Saharan Africa. Epidemiol Infect 141:1342–1356PubMedCrossRefGoogle Scholar
  43. De Jong BC, Hill PC, Aiken A, Awine T, Antonio M, Adetifa IM, Jackson-Sillah DJ, Fox A, Deriemer K, Gagneux S, Borgdorff MW, Mcadam KP, Corrah T, Small PM, Adegbola RA (2008) Progression to active tuberculosis, but not transmission, varies by Mycobacterium tuberculosis lineage in The Gambia. J Infect Dis 198:1037–1043PubMedPubMedCentralCrossRefGoogle Scholar
  44. De La Fuente J, Diez-Delgado I, Contreras M, Vicente J, Cabezas-Cruz A, Manrique M, Tobes R, Lopez V, Romero B, Dominguez L, Garrido JM, Juste R Gortazar C (2015) Complete genome sequences of field isolates of Mycobacterium bovis and Mycobacterium caprae. Genome Announc 3Google Scholar
  45. Dippenaar A, Parsons SD, Sampson SL, Van Der Merwe RG, Drewe JA, Abdallah AM, Siame KK, Gey Van Pittius NC, Van Helden PD, Pain A, Warren RM (2015) Whole genome sequence analysis of Mycobacterium suricattae. Tuberculosis (Edinb) 95:682–688CrossRefGoogle Scholar
  46. Drewe JA, O’connor HM, Weber N, McDonald RA, Delahay RJ (2013) Patterns of direct and indirect contact between cattle and badgers naturally infected with tuberculosis. Epidemiol Infect 141:1467–1475PubMedCrossRefGoogle Scholar
  47. Du Y, Qi Y, Yu L, Lin J, Liu S, Ni H, Pang H, Liu H, Si W, Zhao H, Wang C (2011) Molecular characterization of Mycobacterium tuberculosis complex (MTBC) isolated from cattle in northeast and northwest China. Res Vet Sci 90:385–391PubMedCrossRefGoogle Scholar
  48. Duarte EL, Domingos M, Amado A, Botelho A (2008) Spoligotype diversity of Mycobacterium bovis and Mycobacterium caprae animal isolates. Vet Microbiol 130:415–421PubMedCrossRefGoogle Scholar
  49. Erler W, Martin G, Sachse K, Naumann L, Kahlau D, Beer J, Bartos M, Nagy G, Cvetnic Z, Zolnir-Dovc M, Pavlik I (2004) Molecular fingerprinting of Mycobacterium bovis subsp. caprae isolates from central Europe. J Clin Microbiol 42:2234–2238PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fink M, Schleicher C, Gonano M, Prodinger WM, Pacciarini M, Glawischnig W, Ryser-Degiorgis MP, Walzer C, Stalder GL, Lombardo D, Schobesberger H, Winter P, Buttner M (2015) Red deer as maintenance host for bovine tuberculosis, Alpine region. Emerg Infect Dis 21:464–467PubMedPubMedCentralCrossRefGoogle Scholar
  51. Fitzgerald SD, Kaneene JB (2013) Wildlife reservoirs of bovine tuberculosis worldwide: hosts, pathology, surveillance, and control. Vet Pathol 50:488–499PubMedCrossRefGoogle Scholar
  52. Forshaw D, Phelps GR (1991) Tuberculosis in a captive colony of pinnipeds. J Wildl Dis 27:288–295PubMedCrossRefGoogle Scholar
  53. Frota CC, Hunt DM, Buxton RS, Rickman L, Hinds J, Kremer K, Van Soolingen D, Colston MJ (2004) Genome structure in the vole bacillus, Mycobacterium microti, a member of the Mycobacterium tuberculosis complex with a low virulence for humans. Microbiology 150:1519–1527PubMedPubMedCentralCrossRefGoogle Scholar
  54. Furphy C, Costello E, Murphy D, Corner LA, Gormley E (2012) DNA typing of Mycobacterium bovis isolates from Badgers (Meles meles) culled from areas in Ireland with different levels of tuberculosis prevalence. Vet Med Int 2012:742478PubMedPubMedCentralCrossRefGoogle Scholar
  55. Garnier T, Eiglmeier K, Camus JC, Medina N, Mansoor H, Pryor M, Duthoy S, Grondin S, Lacroix C, Monsempe C, Simon S, Harris B, Atkin R, Doggett J, Mayes R, Keating L, Wheeler PR, Parkhill J, Barrell BG, Cole ST, Gordon SV, Hewinson RG (2003) The complete genome sequence of Mycobacterium bovis. Proc Natl Acad Sci U S A 100:7877–7882PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gey Van Pittius NC, Perrett KD, Michel AL, Keet DF, Hlokwe T, Streicher EM, Warren RM, Van Helden PD (2012) Infection of African buffalo (Syncerus caffer) by oryx bacillus, a rare member of the antelope clade of the Mycobacterium tuberculosis complex. J Wildl Dis 48:849–857PubMedCrossRefGoogle Scholar
  57. Golby P, Hatch KA, Bacon J, Cooney R, Riley P, Allnutt J, Hinds J, Nunez J, Marsh PD, Hewinson RG, Gordon SV (2007) Comparative transcriptomics reveals key gene expression differences between the human and bovine pathogens of the Mycobacterium tuberculosis complex. Microbiology 153:3323–3336PubMedCrossRefGoogle Scholar
  58. Golby P, Nunez J, Witney A, Hinds J, Quail MA, Bentley S, Harris S, Smith N, Hewinson RG, Gordon SV (2013) Genome-level analyses of Mycobacterium bovis lineages reveal the role of SNPs and antisense transcription in differential gene expression. BMC Genomics 14:710PubMedPubMedCentralCrossRefGoogle Scholar
  59. Gomez-Velasco A, Bach H, Rana AK, Cox LR, Bhatt A, Besra GS, Av-Gay Y (2013) Disruption of the serine/threonine protein kinase H affects phthiocerol dimycocerosates synthesis in Mycobacterium tuberculosis. Microbiology 159:726–736PubMedPubMedCentralCrossRefGoogle Scholar
  60. Gonzalo Asensio J, Maia C, Ferrer NL, Barilone N, Laval F, Soto CY, Winter N, Daffe M, Gicquel B, Martin C, Jackson M (2006) The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J Biol Chem 281:1313–1316PubMedCrossRefGoogle Scholar
  61. Gonzalo-Asensio J, Malaga W, Pawlik A, Astarie-Dequeker C, Passemar C, Moreau F, Laval F, Daffe M, Martin C, Brosch R, Guilhot C (2014) Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. Proc Natl Acad Sci U S A 111:11491–11496PubMedPubMedCentralCrossRefGoogle Scholar
  62. Gordon SV, Brosch R, Billault A, Garnier T, Eiglmeier K, Cole ST (1999) Identification of variable regions in the genomes of tubercle bacilli using bacterial artificial chromosome arrays. Mol Microbiol 32:643–655PubMedCrossRefGoogle Scholar
  63. Goren MB (1970) Sulfolipid I of Mycobacterium tuberculosis, strain H37Rv. I. Purification and properties. Biochim Biophys Acta 210:116–126PubMedCrossRefGoogle Scholar
  64. Gormley E, Corner LA (2013) Control strategies for wildlife tuberculosis in Ireland. Transbound Emerg Dis 60(Suppl 1):128–135PubMedCrossRefGoogle Scholar
  65. Griffin JM, Williams DH, Kelly GE, Clegg TA, O’Boyle I, Collins JD, More SJ (2005) The impact of badger removal on the control of tuberculosis in cattle herds in Ireland. Prev Vet Med 67:237–266PubMedCrossRefGoogle Scholar
  66. Hansen N, Seiler C, Rumpf J, Kraft P, Dlaske H, Abele-Horn M, Muellges W (2012) Human tuberculous meningitis caused by Mycobacterium caprae. Case Rep Neurol 4:54–60PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hart PD, Sutherland I (1977) BCG and vole bacillus vaccines in the prevention of tuberculosis in adolescence and early adult life. Br Med J 2:293–295PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hauer A, De Cruz K, Cochard T, Godreuil S, Karoui C, Henault S, Bulach T, Banuls AL, Biet F, Boschiroli ML (2015) Genetic evolution of Mycobacterium bovis causing tuberculosis in livestock and wildlife in France since 1978. PLoS One 10:e0117103PubMedPubMedCentralCrossRefGoogle Scholar
  69. Heath D (2013) Response to FOI request about various bovine TB costs from 2008 to 2013. In: Department for Environment, F. A. R. A. (ed)Google Scholar
  70. Hewinson RG, Michell SL, Russell WP, Mcadam RA, Jacobs WR Jr (1996) Molecular characterization of MPT83: a seroreactive antigen of Mycobacterium tuberculosis with homology to MPT70. Scand J Immunol 43:490–499PubMedCrossRefGoogle Scholar
  71. Huard RC, Fabre M, De Haas P, Lazzarini LC, Van Soolingen D, Cousins D, Ho JL (2006) Novel genetic polymorphisms that further delineate the phylogeny of the Mycobacterium tuberculosis complex. J Bacteriol 188:4271–4287PubMedPubMedCentralCrossRefGoogle Scholar
  72. Jain M, Petzold CJ, Schelle MW, Leavell MD, Mougous JD, Bertozzi CR, Leary JA, Cox JS (2007) Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proc Natl Acad Sci U S A 104:5133–5138PubMedPubMedCentralCrossRefGoogle Scholar
  73. Karlson AG, Lessel EF (1970) Mycobacterium bovis nom. nov. Int J Syst Evol Microbiol 20:273–282Google Scholar
  74. Kazoora HB, Majalija S, Kiwanuka N, Kaneene JB (2016) Knowledge, attitudes and practices regarding risk to human infection due to Mycobacterium bovis among cattle farming communities in western Uganda. Zoonoses Public Health 63:616–623PubMedCrossRefGoogle Scholar
  75. Keating LA, Wheeler PR, Mansoor H, Inwald JK, Dale J, Hewinson RG, Gordon SV (2005) The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth. Mol Microbiol 56:163–174PubMedCrossRefGoogle Scholar
  76. Kelly GE, Condon J, More SJ, Dolan L, Higgins I, Eves J (2008) A long-term observational study of the impact of badger removal on herd restrictions due to bovine TB in the Irish midlands during 1989–2004. Epidemiol Infect 136:1362–1373PubMedGoogle Scholar
  77. Khattak I, Mushtaq MH, Ahmad MU, Khan MS, Haider J (2016) Zoonotic tuberculosis in occupationally exposed groups in Pakistan. Occup Med (Lond) 66:371–376CrossRefGoogle Scholar
  78. Kiers A, Klarenbeek A, Mendelts B, Van Soolingen D, Koeter G (2008) Transmission of Mycobacterium pinnipedii to humans in a zoo with marine mammals. Int J Tuberc Lung Dis 12:1469–1473PubMedGoogle Scholar
  79. Kubica T, Rusch-Gerdes S, Niemann S (2003) Mycobacterium bovis subsp. caprae caused one-third of human M. bovis-associated tuberculosis cases reported in Germany between 1999 and 2001. J Clin Microbiol 41:3070–3077PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lantos A, Niemann S, Mezosi L, Sos E, Erdelyi K, David S, Parsons LM, Kubica T, Rusch-Gerdes S, Somoskovi A (2003) Pulmonary tuberculosis due to Mycobacterium bovis subsp. caprae in captive Siberian tiger. Emerg Infect Dis 9:1462–1464PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lees VW, Copeland S, Rousseau P (2003) Bovine tuberculosis in elk (Cervus elaphus manitobensis) near Riding Mountain National Park, Manitoba, from 1992 to 2002. Can Vet J 44:830–831PubMedPubMedCentralGoogle Scholar
  82. Levy-Frebault VV, Portaels F (1992) Proposed minimal standards for the genus Mycobacterium and for description of new slowly growing Mycobacterium species. Int J Syst Bacteriol 42:315–323PubMedCrossRefGoogle Scholar
  83. Lewis KN, Liao R, Guinn KM, Hickey MJ, Smith S, Behr MA, Sherman DR (2003) Deletion of RD1 from Mycobacterium tuberculosis mimics bacille Calmette-Guerin attenuation. J Infect Dis 187:117–123PubMedCrossRefGoogle Scholar
  84. Lomme JR, Thoen CO, Himes EM, Vinson JW, King RE (1976) Mycobacterium tuberculosis infection in two East African oryxes. J Am Vet Med Assoc 169:912–914PubMedGoogle Scholar
  85. Mableson HE, Okello A, Picozzi K, Welburn SC (2014) Neglected zoonotic diseases-the long and winding road to advocacy. PLoS Negl Trop Dis 8:e2800PubMedPubMedCentralCrossRefGoogle Scholar
  86. Magee DA, Conlon KM, Nalpas NC, Browne JA, Pirson C, Healy C, Mcloughlin KE, Chen J, Vordermeier HM, Gormley E, Machugh DE, Gordon SV (2014) Innate cytokine profiling of bovine alveolar macrophages reveals commonalities and divergence in the response to Mycobacterium bovis and Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 94:441–450CrossRefGoogle Scholar
  87. Malama S, Muma J, Munyeme M, Mbulo G, Muwonge A, Shamputa IC, Djonne B, Godfroid J, Johansen TB (2014) Isolation and molecular characterization of Mycobacterium tuberculosis from humans and cattle in Namwala District, Zambia. EcoHealth 11:564–570PubMedCrossRefGoogle Scholar
  88. Marmiesse M, Brodin P, Buchrieser C, Gutierrez C, Simoes N, Vincent V, Glaser P, Cole ST, Brosch R (2004) Macro-array and bioinformatic analyses reveal mycobacterial ‘core’ genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex. Microbiology 150:483–496PubMedCrossRefGoogle Scholar
  89. Miller M, Michel A, Van Helden P, Buss P (2016) Tuberculosis in rhinoceros: an underrecognized threat? Transbound Emerg DisGoogle Scholar
  90. Molle V, Reynolds RC, Alderwick LJ, Besra GS, Cozzone AJ, Futterer K, Kremer L (2008) EmbR2, a structural homologue of EmbR, inhibits the Mycobacterium tuberculosis kinase/substrate pair PknH/EmbR. Biochem J 410:309–317PubMedCrossRefGoogle Scholar
  91. More SJ, Good M (2006) The tuberculosis eradication programme in Ireland: a review of scientific and policy advances since 1988. Vet Microbiol 112:239–251PubMedCrossRefGoogle Scholar
  92. More SJ, Good M (2015) Understanding and managing bTB risk: perspectives from Ireland. Vet Microbiol 176:209–218PubMedCrossRefGoogle Scholar
  93. Moser I, Prodinger WM, Hotzel H, Greenwald R, Lyashchenko KP, Bakker D, Gomis D, Seidler T, Ellenberger C, Hetzel U, Wuennemann K, Moisson P (2008) Mycobacterium pinnipedii: transmission from South American sea lion (Otaria byronia) to Bactrian camel (Camelus bactrianus bactrianus) and Malayan tapirs (Tapirus indicus). Vet Microbiol 127:399–406PubMedCrossRefGoogle Scholar
  94. Mostowy S, Cousins D, Behr MA (2004) Genomic interrogation of the dassie bacillus reveals it as a unique RD1 mutant within the Mycobacterium tuberculosis complex. J Bacteriol 186:104–109PubMedPubMedCentralCrossRefGoogle Scholar
  95. Muller B, Durr S, Alonso S, Hattendorf J, Laisse CJ, Parsons SD, Van Helden PD, Zinsstag J (2013) Zoonotic Mycobacterium bovis-induced tuberculosis in humans. Emerg Infect Dis 19:899–908PubMedPubMedCentralCrossRefGoogle Scholar
  96. Munoz Mendoza M, Juan L, Menendez S, Ocampo A, Mourelo J, Saez JL, Dominguez L, Gortazar C, Garcia Marin JF, Balseiro A (2012) Tuberculosis due to Mycobacterium bovis and Mycobacterium caprae in sheep. Vet J 191:267–269PubMedCrossRefGoogle Scholar
  97. Murphy D, Costello E, Aldwell FE, Lesellier S, Chambers MA, Fitzsimons T, Corner LA, Gormley E (2014) Oral vaccination of badgers (Meles meles) against tuberculosis: comparison of the protection generated by BCG vaccine strains Pasteur and Danish. Vet J 200:362–367PubMedCrossRefGoogle Scholar
  98. Niemann S, Richter E, Dalugge-Tamm H, Schlesinger H, Graupner D, Konigstein B, Gurath G, Greinert U, Rusch-Gerdes S (2000) Two cases of Mycobacterium microti derived tuberculosis in HIV-negative immunocompetent patients. Emerg Infect Dis 6:539–542PubMedPubMedCentralCrossRefGoogle Scholar
  99. Niemann S, Richter E, Rusch-Gerdes S (2002) Biochemical and genetic evidence for the transfer of Mycobacterium tuberculosis subsp. caprae Aranaz et al. 1999 to the species Mycobacterium bovis Karlson and Lessel 1970 (approved lists 1980) as Mycobacterium bovis subsp. caprae comb. nov. Int J Syst Evol Microbiol 52:433–436PubMedCrossRefGoogle Scholar
  100. Olea-Popelka FJ, Flynn O, Costello E, Mcgrath G, Collins JD, O'Keeffe J, Kelton DF, Berke O, Martin SW (2005) Spatial relationship between Mycobacterium bovis strains in cattle and badgers in four areas in Ireland. Prev Vet Med 71:57–70PubMedCrossRefGoogle Scholar
  101. Olea-Popelka FJ, Fitzgerald P, White P, Mcgrath G, Collins JD, O’Keeffe J, Kelton DF, Berke O, More S, Martin SW (2009) Targeted badger removal and the subsequent risk of bovine tuberculosis in cattle herds in county Laois, Ireland. Prev Vet Med 88:178–184PubMedCrossRefGoogle Scholar
  102. Pang JM, Layre E, Sweet L, Sherrid A, Moody DB, Ojha A, Sherman DR (2012) The polyketide Pks1 contributes to biofilm formation in Mycobacterium tuberculosis. J Bacteriol 194:715–721PubMedPubMedCentralCrossRefGoogle Scholar
  103. Parra A, Fernandez-llario P, Tato A, Larrasa J, Garcia A, Alonso JM, Hermoso de mendoza M, Hermoso de mendoza J (2003) Epidemiology of Mycobacterium bovis infections of pigs and wild boars using a molecular approach. Vet Microbiol 97:123–133PubMedCrossRefGoogle Scholar
  104. Parsons SD, Drewe JA, Gey Van Pittius NC, Warren RM, Van Helden PD (2013) Novel cause of tuberculosis in meerkats, South Africa. Emerg Infect Dis 19:2004–2007PubMedPubMedCentralCrossRefGoogle Scholar
  105. Pate M, Svara T, Gombac M, Paller T, Zolnir-Dovc M, Emersic I, Prodinger WM, Bartos M, Zdovc I, Krt B, Pavlik I, Cvetnic Z, Pogacnik M, Ocepek M (2006) Outbreak of tuberculosis caused by Mycobacterium caprae in a zoological garden. J Vet Med B Infect Dis Vet Public Health 53:387–392PubMedCrossRefGoogle Scholar
  106. Perez J, Garcia R, Bach H, De Waard JH, Jacobs WR Jr, Av-Gay Y, Bubis J, Takiff HE (2006) Mycobacterium tuberculosis transporter MmpL7 is a potential substrate for kinase PknD. Biochem Biophys Res Commun 348:6–12PubMedCrossRefGoogle Scholar
  107. Perez-Jacoiste Asin MA, Fernandez-Ruiz M, Lopez-Medrano F, Lumbreras C, Tejido A, San Juan R, Arrebola-Pajares A, Lizasoain M, Prieto S, Aguado JM (2014) Bacillus Calmette-Guerin (BCG) infection following intravesical BCG administration as adjunctive therapy for bladder cancer: incidence, risk factors, and outcome in a single-institution series and review of the literature. Medicine (Baltimore) 93:236–254PubMedCentralCrossRefGoogle Scholar
  108. Pesciaroli M, Alvarez J, Boniotti MB, Cagiola M, Di Marco V, Marianelli C, Pacciarini M, Pasquali P (2014) Tuberculosis in domestic animal species. Res Vet Sci 97(Suppl):S78–S85PubMedCrossRefGoogle Scholar
  109. Piercy J, Werling D, Coffey TJ (2007) Differential responses of bovine macrophages to infection with bovine-specific and non-bovine specific mycobacteria. Tuberculosis (Edinb) 87:415–420CrossRefGoogle Scholar
  110. Prodinger WM, Eigentler A, Allerberger F, Schonbauer M, Glawischnig W (2002) Infection of red deer, cattle, and humans with Mycobacterium bovis subsp. caprae in western Austria. J Clin Microbiol 40:2270–2272PubMedPubMedCentralCrossRefGoogle Scholar
  111. Prodinger WM, Indra A, Koksalan OK, Kilicaslan Z, Richter E (2014) Mycobacterium caprae infection in humans. Expert Rev Anti-Infect Ther 12:1501–1513PubMedCrossRefGoogle Scholar
  112. Pym AS, Brodin P, Brosch R, Huerre M, Cole ST (2002) Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46:709–717PubMedCrossRefGoogle Scholar
  113. Rehren G, Walters S, Fontan P, Smith I, Zarraga AM (2007) Differential gene expression between Mycobacterium bovis and Mycobacterium tuberculosis. Tuberculosis (Edinb) 87:347–359CrossRefGoogle Scholar
  114. Rodriguez E, Sanchez LP, Perez S, Herrera L, Jimenez MS, Samper S, Iglesias MJ (2009) Human tuberculosis due to Mycobacterium bovis and M. caprae in Spain, 2004–2007. Int J Tuberc Lung Dis 13:1536–1541PubMedGoogle Scholar
  115. Rodriguez S, Bezos J, Romero B, De Juan L, Alvarez J, Castellanos E, Moya N, Lozano F, Javed MT, Saez-Llorente JL, Liebana E, Mateos A, Dominguez L, Aranaz A, Spanish Network on, S. & Monitoring of Animal, T (2011) Mycobacterium caprae infection in livestock and wildlife, Spain. Emerg Infect Dis 17:532–535PubMedPubMedCentralCrossRefGoogle Scholar
  116. Said-Salim B, Mostowy S, Kristof AS, Behr MA (2006) Mutations in Mycobacterium tuberculosis Rv0444c, the gene encoding anti-SigK, explain high level expression of MPB70 and MPB83 in Mycobacterium bovis. Mol Microbiol 62:1251–1263PubMedCrossRefGoogle Scholar
  117. Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK (2003) Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: insights into the phagosomal environment. J Exp Med 198:693–704PubMedPubMedCentralCrossRefGoogle Scholar
  118. Seeliger JC, Holsclaw CM, Schelle MW, Botyanszki Z, Gilmore SA, Tully SE, Niederweis M, Cravatt BF, Leary JA, Bertozzi CR (2012) Elucidation and chemical modulation of sulfolipid-1 biosynthesis in Mycobacterium tuberculosis. J Biol Chem 287:7990–8000PubMedCrossRefGoogle Scholar
  119. Senaratne RH, Sidders B, Sequeira P, Saunders G, Dunphy K, Marjanovic O, Reader JR, Lima P, Chan S, Kendall S, Mcfadden J, Riley LW (2008) Mycobacterium tuberculosis strains disrupted in mce3 and mce4 operons are attenuated in mice. J Med Microbiol 57:164–170PubMedCrossRefGoogle Scholar
  120. Sharma K, Gupta M, Pathak M, Gupta N, Koul A, Sarangi S, Baweja R, Singh Y (2006) Transcriptional control of the mycobacterial embCAB operon by PknH through a regulatory protein, EmbR, in vivo. J Bacteriol 188:2936–2944PubMedPubMedCentralCrossRefGoogle Scholar
  121. Sheridan M (2011) Progress in tuberculosis eradication in Ireland. Vet Microbiol 151:160–169PubMedCrossRefGoogle Scholar
  122. Sinsimer D, Huet G, Manca C, Tsenova L, Koo MS, Kurepina N, Kana B, Mathema B, Marras SA, Kreiswirth BN, Guilhot C, Kaplan G (2008) The phenolic glycolipid of Mycobacterium tuberculosis differentially modulates the early host cytokine response but does not in itself confer hypervirulence. Infect Immun 76:3027–3036PubMedPubMedCentralCrossRefGoogle Scholar
  123. Smith T (1898) A comparative study of bovine tubercle bacilli and of human bacilli from sputum. J Exp Med 3:451–511PubMedPubMedCentralCrossRefGoogle Scholar
  124. Smith N (1960) The ‘Dassie’ bacillus. Tubercle 41:203–212PubMedCrossRefGoogle Scholar
  125. Smith N (1965) Animal pathogenicity of the ‘Dassie Bacillus’. Tubercle 46:58–64PubMedCrossRefGoogle Scholar
  126. Smith NH, Kremer K, Inwald J, Dale J, Driscoll JR, Gordon SV, Van Soolingen D, Hewinson RG, Smith JM (2006) Ecotypes of the Mycobacterium tuberculosis complex. J Theor Biol 239:220–225PubMedCrossRefGoogle Scholar
  127. Smith NH, Crawshaw T, Parry J, Birtles RJ (2009a) Mycobacterium microti: more diverse than previously thought. J Clin Microbiol 47:2551–2559PubMedPubMedCentralCrossRefGoogle Scholar
  128. Smith NH, Hewinson RG, Kremer K, Brosch R, Gordon SV (2009b) Myths and misconceptions: the origin and evolution of Mycobacterium tuberculosis. Nat Rev Microbiol 7:537–544PubMedCrossRefGoogle Scholar
  129. Smith GC, Mcdonald RA, Wilkinson D (2012a) Comparing badger (Meles meles) management strategies for reducing tuberculosis incidence in cattle. PLoS One 7:e39250PubMedPubMedCentralCrossRefGoogle Scholar
  130. Smith SE, Showers-Corneli P, Dardenne CN, Harpending HH, Martin DP, Beiko RG (2012b) Comparative genomic and phylogenetic approaches to characterize the role of genetic recombination in mycobacterial evolution. PLoS One 7:e50070PubMedPubMedCentralCrossRefGoogle Scholar
  131. Sohaskey CD, Modesti L (2009) Differences in nitrate reduction between Mycobacterium tuberculosis and Mycobacterium bovis are due to differential expression of both narGHJI and narK2. FEMS Microbiol Lett 290:129–134PubMedCrossRefGoogle Scholar
  132. Soto CY, Menendez MC, Perez E, Samper S, Gomez AB, Garcia MJ, Martin C (2004) IS6110 mediates increased transcription of the phoP virulence gene in a multidrug-resistant clinical isolate responsible for tuberculosis outbreaks. J Clin Microbiol 42:212–219PubMedPubMedCentralCrossRefGoogle Scholar
  133. Srivastava K, Chauhan DS, Gupta P, Singh HB, Sharma VD, Yadav VS, Sreekumaran, Thakral SS, Dharamdheeran JS, Nigam P, Prasad HK, Katoch VM (2008) Isolation of Mycobacterium bovis & M. tuberculosis from cattle of some farms in north India – possible relevance in human health. Indian J Med Res 128:26–31PubMedGoogle Scholar
  134. Stermann M, Bohrssen A, Diephaus C, Maass S, Bange FC (2003) Polymorphic nucleotide within the promoter of nitrate reductase (NarGHJI) is specific for Mycobacterium tuberculosis. J Clin Microbiol 41:3252–3259PubMedPubMedCentralCrossRefGoogle Scholar
  135. Sula L, Radkovsky I (1976) Protective effects of M. microti vaccine against tuberculosis. J Hyg Epidemiol Microbiol Immunol 20:1–6PubMedGoogle Scholar
  136. Thapa J, Nakajima C, Maharjan B, Poudell A, Suzuki Y (2015) Molecular characterization of Mycobacterium orygis isolates from wild animals of Nepal. Jpn J Vet Res 63:151–158PubMedGoogle Scholar
  137. Thompson PJ, Cousins DV, Gow BL, Collins DM, Williamson BH, Dagnia HT (1993) Seals, seal trainers, and mycobacterial infection. Am Rev Respir Dis 147:164–167PubMedCrossRefGoogle Scholar
  138. Van Ingen J, Rahim Z, Mulder A, Boeree MJ, Simeone R, Brosch R, Van Soolingen D (2012) Characterization of Mycobacterium orygis as M. tuberculosis complex subspecies. Emerg Infect Dis 18:653–655PubMedPubMedCentralCrossRefGoogle Scholar
  139. Van Soolingen D, De Haas PE, Haagsma J, Eger T, Hermans PW, Ritacco V, Alito A, Van Embden JD (1994) Use of various genetic markers in differentiation of Mycobacterium bovis strains from animals and humans and for studying epidemiology of bovine tuberculosis. J Clin Microbiol 32:2425–2433PubMedPubMedCentralGoogle Scholar
  140. Van Soolingen D, Van Der Zanden AG, De Haas PE, Noordhoek GT, Kiers A, Foudraine NA, Portaels F, Kolk AH, Kremer K, Van Embden JD (1998) Diagnosis of Mycobacterium microti infections among humans by using novel genetic markers. J Clin Microbiol 36:1840–1845PubMedPubMedCentralGoogle Scholar
  141. Waters WR, Palmer MV (2015) Mycobacterium bovis Infection of cattle and white-tailed deer: translational research of relevance to human tuberculosis. ILAR J 56:26–43PubMedCrossRefGoogle Scholar
  142. Wells AQ (1937) Tuberculosis in wild voles. Lancet 229:1221CrossRefGoogle Scholar
  143. Wells AQ (1946) The murine type of tubercle bacilli (The vole acid-fast bacillus). MRC Spec Rep Ser Med Res Counc LondonGoogle Scholar
  144. Whelan AO, Coad M, Cockle PJ, Hewinson G, Vordermeier M, Gordon SV (2010) Revisiting host preference in the Mycobacterium tuberculosis complex: experimental infection shows M. tuberculosis H37Rv to be avirulent in cattle. PLoS One 5:e8527PubMedPubMedCentralCrossRefGoogle Scholar
  145. WHO (2005) The control of neglected zoonotic diseases. In: WHO/SDE/FOS/2006 (ed)Google Scholar
  146. WHO (2015) Global tuberculosis report [Online]. Available: http://www.who.int/tb/publications/global_report/en. Accessed March 2016
  147. Widdison S, Watson M, Piercy J, Howard C, Coffey TJ (2008) Granulocyte chemotactic properties of M. tuberculosis versus M. bovis-infected bovine alveolar macrophages. Mol Immunol 45:740–749PubMedCrossRefGoogle Scholar
  148. Wiker HG (2009) MPB70 and MPB83 – major antigens of Mycobacterium bovis. Scand J Immunol 69:492–499PubMedCrossRefGoogle Scholar
  149. Winder CL, Gordon SV, Dale J, Hewinson RG, Goodacre R (2006) Metabolic fingerprints of Mycobacterium bovis cluster with molecular type: implications for genotype-phenotype links. Microbiology 152: 2757–2765PubMedCrossRefGoogle Scholar
  150. Woods R, Cousins DV, Kirkwood R, Obendorf DL (1995) Tuberculosis in a wild Australian fur seal (Arctocephalus pusillus doriferus) from Tasmania. J Wildl Dis 31:83–86PubMedCrossRefGoogle Scholar
  151. Wright DM, Reid N, Ian Montgomery W, Allen AR, Skuce RA, Kao RR (2015) Herd-level bovine tuberculosis risk factors: assessing the role of low-level badger population disturbance. Sci Rep 5:13062PubMedPubMedCentralCrossRefGoogle Scholar
  152. Zhang L, English D, Andersen BR (1991) Activation of human neutrophils by Mycobacterium tuberculosis-derived sulfolipid-1. J Immunol 146:2730–2736PubMedGoogle Scholar
  153. Zhu L, Zhong J, Jia X, Liu G, Kang Y, Dong M, Zhang X, Li Q, Yue L, Li C, Fu J, Xiao J, Yan J, Zhang B, Lei M, Chen S, Lv L, Zhu B, Huang H, Chen F (2016) Precision methylome characterization of Mycobacterium tuberculosis complex (MTBC) using PacBio single-molecule real-time (SMRT) technology. Nucleic Acids Res 44:730–743PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.UCD School of Veterinary MedicineUniversity College DublinDublin 4Ireland
  2. 2.UCD School of MedicineUniversity College DublinDublin 4Ireland
  3. 3.UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
  4. 4.UCD Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublin 4Ireland

Personalised recommendations