Advertisement

Design Principle for a Population-Based Model of Epileptic Dynamics

  • Gerold Baier
  • Richard Rosch
  • Peter Neal Taylor
  • Yujiang Wang
Chapter

Abstract

Epilepsy is defined as the brain’s susceptibility to recurrent, hypersynchronous discharges that disrupt normal neuronal function. Over the last decades, progress has been made in using dynamical systems theory and computational analyses to characterise the nature of seizure-like activity. Using simplified models of population dynamics, macroscale features of epileptic seizures can be described as expressions of model interactions. There is a trade-off between complexity of these models and their explanatory power: Models that represent biophysical components of the brain often contain many degrees of freedom and nonlinearities, which can make them challenging to interpret and often means that different model parameterisations can produce similar results. Simple models, on the other hand, do not usually have a direct correlate in brain anatomy or physiology, but rather capture more abstract quantities in the brain. However, the effects of individual parameters are easier to interpret. Here we suggest a design principle to generate the complex rhythmic evolution of tonic-clonic epileptic seizures in a neural population approach. Starting from a simple neuronal oscillator with a single nonlinearity , we show in a step-by-step analysis how complex neuronal dynamics derived from patient observations can be reconstructed.

Notes

Acknowledgements

We thank Otto Rössler, Viktor Jirsa, Ulrich Stephani and Beate Diehl for discussion.

References

  1. 1.
    M.P. Richardson, New observations may inform seizure models: very fast and very slow oscillations. Prog. Biophys. Mol. Biol. 105, 5–13 (2011)CrossRefGoogle Scholar
  2. 2.
    M. Breakspear, J. Roberts, J. Terry, S. Rodrigues, N. Mahant, P. Robinson, A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb. Cortex 16, 1296–1313 (2006)CrossRefGoogle Scholar
  3. 3.
    V.K. Jirsa, W.C. Stacey, P.P. Quilichini, A.I. Ivanov, C. Bernard, On the nature of seizure dynamics. Brain 137, 2210–2230 (2014)CrossRefGoogle Scholar
  4. 4.
    F. Wendling, P. Benquet, F. Bartolomei, V. Jirsa, Computational models of epileptiform activity. J. Neurosci. Methods (2015)Google Scholar
  5. 5.
    W. Lytton, Computer modelling of epilepsy. Nat. Rev. Neurosci. 9, 626–637 (2008)CrossRefGoogle Scholar
  6. 6.
    H. Wilson, J. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)CrossRefGoogle Scholar
  7. 7.
    F. Lopes Da Silva, W. Blanes, S.N. Kalitzin, J. Parra, P. Suffczynski, D.N. Velis, Epilepsies as dynamical diseases of brain systems: basic models of the transition between normal and epileptic activity. Epilepsia 44, 72–83 (2003)CrossRefGoogle Scholar
  8. 8.
    Y. Wang, M. Goodfellow, P. Taylor, G. Baier, Phase space approach for modeling of epileptic dynamics. Phys. Rev. E 85(061), 918 (2012)Google Scholar
  9. 9.
    S. Amari, Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    D. Fan, Q. Wang, M. Perc, Disinhibition-induced transitions between absence and tonic-clonic epileptic seizures. Sci. Rep. 5 (2015)Google Scholar
  11. 11.
    P.N. Taylor, G. Baier, A spatially extended model for macroscopic spike-wave discharges. J. Comput. Neurosci. 31, 679–684 (2011)CrossRefGoogle Scholar
  12. 12.
    P.N. Taylor, G. Baier, S.S. Cash, J. Dauwels, J. Slotine, Y. Wang, A model of stimulus induced epileptic spike-wave discharges. IEEE Proc. SSCI 2013, 53–59 (2013)Google Scholar
  13. 13.
    G.K. Cooray, B. Sengupta, P.K. Douglas, K. Friston, Dynamic causal modelling of electrographic seizure activity using bayesian belief updating. NeuroImage 125, 1142–1154 (2016)CrossRefGoogle Scholar
  14. 14.
    L. Kuhlmann, D.B. Grayden, F. Wendling, S.J. Schiff, Role of multiple-scale modeling of epilepsy in seizure forecasting. J. Clin. Neurophysiol. 32, 220–226 (2015)CrossRefGoogle Scholar
  15. 15.
    E.M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (The MIT Press, Cambridge, 2007)Google Scholar
  16. 16.
    P.N. Taylor, Y. Wang, M. Goodfellow, J. Dauwels, F. Moeller, U. Stephani, G. Baier, A computational study of stimulus driven epileptic seizure abatement. PLoS ONE 9(e114), 316 (2014b). https://doi.org/10.1371/journal.pone.0114316
  17. 17.
    A. Holgado-Nevado, F. Marten, M. Richardson, J. Terry, Characterising the dynamics of EEG waveforms as the path through parameter space of a neural mass model: application to epilepsy seizure evolution. NeuroImage 59, 2374–2392 (2012)CrossRefGoogle Scholar
  18. 18.
    F. Wendling, F. Bartolomei, J. Bellanger, P. Chauvel, Epileptic fast activity can be explained by a model of impaired GABAergic dendritic inhibition. Eur. J. Neurosci. 15, 1499–1508 (2002)CrossRefGoogle Scholar
  19. 19.
    M.J. Cook, T.J. O’Brien, S.F. Berkovic, M. Murphy, A. Morokoff, G. Fabinyi, W. D’Souza, R. Yerra, J. Archer, L. Litewka, S. Hosking, P. Lightfoot, V. Ruedebusch, W.D. Sheffield, D. Snyder, K. Leyde, D. David Himes, Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 12, 563–571 (2013)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, F. Hutchings, M. Kaiser, Computational modeling of neurostimulation in brain diseases. Prog. Brain Res. 222, 191–228 (2015)CrossRefGoogle Scholar
  21. 21.
    N. Dehghani, A. Peyrache, B. Telenczuk, M. Le Van Quyen, E. Halgren, S.S. Cash, N.G. Hatsopoulos, A. Destexhe, Dynamic balance of excitation and inhibition in human and monkey neocortex. Sci. Rep. 6, 23,176 EP (2016)Google Scholar
  22. 22.
    Y. Wang, M. Goodfellow, P. Taylor, G. Baier, Dynamic mechanisms of neocortical focal seizure onset. PLoS Comput. Biol. 10(e1003), 787 (2014)Google Scholar
  23. 23.
    T. Proix, F. Bartolomei, P. Chauvel, C. Bernard, V. Jirsa, Permittivity coupling across brain regions determines seizure recruitment in partial epilepsy. J. Neurosci. 34, 15,009–15,021 (2014)Google Scholar
  24. 24.
    P.N. Taylor, M. Goodfellow, Y. Wang, G. Baier, Towards a large-scale model of patient-specific epileptic spike-wave discharges. Biol. Cybern. 107, 83–94 (2013b)CrossRefGoogle Scholar
  25. 25.
    P.N. Taylor, M. Kaiser, J. Dauwels, Structural connectivity based whole brain modelling in epilepsy. J. Neurosci. Methods (2014a)Google Scholar
  26. 26.
    F. Hutchings, C. Han, S. Keller, B. Weber, P. Taylor, M. Kaiser, Predicting surgery targets in temporal lobe epilepsy through structural connectome based simulations. PLoS Comput. Biol. 11(e1004), 642 (2015)Google Scholar
  27. 27.
    L. Martinet, O. Ahmed, K. Lepage, S. Cash, M. Kramer, Slow spatial recruitment of neocortex during secondarily generalized seizures and its relation to surgical outcome. J. Neurosci. 35, 9477–9490 (2015)CrossRefGoogle Scholar
  28. 28.
    P.N. Taylor, J. Thomas, N. Sinha, J. Dauwels, M. Kaiser, T. Thesen, J. Ruths, Optimal control based seizure abatement using patient derived connectivity. Front. Neurosci. 9 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Gerold Baier
    • 1
  • Richard Rosch
    • 2
  • Peter Neal Taylor
    • 3
  • Yujiang Wang
    • 4
  1. 1.Cell and Developmental BiologyUniversity College LondonLondonUK
  2. 2.Wellcome Trust Centre for NeuroimagingUniversity College LondonLondonUK
  3. 3.Institute of NeuroscienceNewcastle UniversityNewcastleUK
  4. 4.ICOS, School of Computing ScienceNewcastle UniversityNewcastleUK

Personalised recommendations