Skip to main content

Nonlinear Behavior of a Self-Propelled Droplet Coupled with a Chemical Oscillatory Reaction

  • Chapter
  • First Online:
Complexity and Synergetics

Abstract

Several self-propelled objects have been investigated and used to add functionalities mimicking biological systems. One promising approach is the introduction of nonlinear chemical reactions such as the Belousov-Zhabotinsky (BZ) reaction . In this work we placed an aqueous droplet of the BZ solution into an oil phase composed of monoolein and squalane. The BZ droplet moved spontaneously, and its speed oscillated periodically in synchronization with the redox state of the aqueous solution. This finding and measurements of the interfacial tension between water and squalane reveal that the oscillatory motion of the BZ droplet originated from the oscillation of the Br2-concentration. This system has the potential to reflect the characteristics of nonlinear chemical reactions inside the aqueous droplet: not only periodical oscillation but also bifurcations , hysteresis, and responsiveness to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Bosgraaf, P.J.M. van Haastert, The ordered extension of pseudopodia by amoeboid cells in the absence of external cues. PLoS ONE 4, e5253 (2009)

    Article  Google Scholar 

  2. L. Alvarez, B.M. Friedrich, G. Gompper, U.B. Kaupp, The computational sperm cell. Trends Cell Biol. 24, 198–207 (2014)

    Article  Google Scholar 

  3. J.W.M. Bush, D.L. Hu, Walking on water: biolocomotion at the interface. Ann. Rev. Fluid. Mech. 38, 339–369 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Y. Hong, D. Velegol, N. Chaturvedic, A. Sen, Biomimetic behavior of synthetic particles: from microscopic randomness to macroscopic control. Phys. Chem. Chem. Phys. 12, 1423–1435 (2010)

    Article  Google Scholar 

  5. S. Nakata, Y. Iguchi, S. Ose, M. Kuboyama, T. Ishii, K. Yoshikawa, Self-rotation of a camphor scraping on water: new insight into the old problem. Langmuir 13, 4454–4458 (1997)

    Article  Google Scholar 

  6. K. Nagai, Y. Sumino, H. Kitahata, K. Yoshikawa, Mode selection in the spontaneous motion of an alcohol droplet. Phys. Rev. E 71, 065301 (2005)

    Article  Google Scholar 

  7. S. Tanaka, Y. Sogabe, S. Nakata, Spontaneous change in trajectory patterns of a self-propelled oil droplet at the air-surfactant solution interface. Phys. Rev. E 91, 032406 (2015)

    Article  Google Scholar 

  8. T. Toyota, N. Maru, M.M. Hanczyc, T. Ikegami, T. Sugawara, Self-propelled oil droplets consuming “fuel” surfactant. J. Am. Chem. Soc. 131, 5012–5013 (2009)

    Article  Google Scholar 

  9. Y. Sumino, N. Magome, T. Hamada, K. Yoshikawa, Self-running droplet: emergence of regular motion from nonequilibrium noise. Phys. Rev. Lett. 94, 068301 (2005)

    Article  Google Scholar 

  10. T. Vicsek, A. Zafeiris, Collective motion. Phys. Rep. 517, 71–140 (2012)

    Article  Google Scholar 

  11. N.J. Suematsu, S. Nakata, Self-propelled object response to environment. Curr. Phys. Chem. 5, 21–28 (2015)

    Article  Google Scholar 

  12. N.J. Suematsu, Y. Miyahara, Y. Matsuda, S. Nakata, Self-motion of a benzoquinone disk coupled with a redox reaction. J. Phys. Chem. C 114, 13340–13343 (2010)

    Article  Google Scholar 

  13. S. Nakata, M. Nagayama, H. Kitahata, N.J. Suematsu, T. Hasegawa, Physicochemical design and analysis of self-propelled objects that are characteristically sensitive to environments. Phys. Chem. Chem. Phys. 17, 10326–10338 (2015)

    Article  Google Scholar 

  14. I.R. Epstein, K. Showalter, Nonlinear chemical dynamics: oscillations, patterns, and chaos. J. Phys. Chem. 100, 13132–13147 (1996)

    Article  Google Scholar 

  15. K. Asakura, R. Konishi, T. Nakatani, T. Nakano, M. Kamata, Turing pattern formation by the CIMA reaction in a chemical system consisting of quaternary alkyl ammonium cationic groups. J. Phys. Chem. B 115, 3959–3963 (2011)

    Article  Google Scholar 

  16. J.J. Tyson, Analytic representation of oscillations, excitability, and traveling waves in a realistic model of Belousov-Zhabotinskii reaction. J. Chem. Phys. 66, 905–915 (1977)

    Article  Google Scholar 

  17. O. Steinbock, S.C. Müller, Radius-dependent inhibition and activation of chemical oscillations in small droplets. J. Phys. Chem. A 102, 6485–6490 (1998)

    Google Scholar 

  18. H. Kitahata, R. Aihara, N. Magome, K. Yoshikawa, Convective and periodic motion driven by a chemical wave. J. Chem. Phys. 116, 5666–5672 (2002)

    Article  Google Scholar 

  19. H. Kitahata, N. Yoshinaga, K.H. Nagai, Y. Sumino, Spontaneous motion of a droplet coupled with a chemical wave. Phys. Rev. E 84, 015101 (2011)

    Article  Google Scholar 

  20. J. Szymanski, J. Gorecki, M.J.B. Hauser, Chemo-mechanical coupling in reactive droplets. J. Phys. Chem. C 117, 13080 (2013)

    Article  Google Scholar 

  21. S. Nakata, M. Yoshii, S. Suzuki, R. Yoshida, Periodic reciprocating motion of a polymer gel on an aqueous phase synchronized with the Belousov-Zhabotinsky reaction. Langmuir 30, 517–521 (2014)

    Article  Google Scholar 

  22. N. Yoshinaga, K.H. Nagai, Y. Sumino, H. Kitahata, Drift instability in the motion of a fluid droplet with a chemically reactive surface driven by Marangoni flow. Phys. Rev. E 86, 016108 (2012)

    Article  Google Scholar 

  23. S. Thutupalli, R. Seemann, S. Herminghaus, Swarming behavior of simple model squirmers. New J. Phys. 13, 073021 (2011)

    Article  Google Scholar 

  24. S. Herminghaus, C.C. Maass, C. Krüger, S. Thutupalli, L. Goehring, C. Bahr, Interfacial mechanisms in active emulsions. Soft Matter 10, 7008–7022 (2014)

    Article  Google Scholar 

  25. N.J. Suematsu, Y. Mori, T. Amemiya, S. Nakata, Oscillation of speed of a self-propelled Belousov-Zhabotinsky droplet. J. Phys. Chem. Lett. 7, 3424–3428 (2016)

    Article  Google Scholar 

  26. N.J. Suematsu, Self-propelled motion coupled with chemical reaction. Presented at Symposium “Complexity and Synergetics”, Hannover, 8–11 July 2015

    Google Scholar 

  27. C.-H. Chang, E.I. Franses, Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Colloid Surfaces A 100, 1–45 (1995)

    Article  Google Scholar 

  28. A.W. Adamson, P. Alice, Physical Chemistry of Surfaces, 6th edn. (Wiley, New York, 1997)

    Google Scholar 

  29. R.J. Field, P.M. Boyd, Bromine-hydrolysis control in the cerium ion-bromate ion-oxalic acid-acetone Belousov-Zhabotinskii oscillator. J. Phys. Chem. 89, 3707–3714 (1985)

    Article  Google Scholar 

  30. R.J. Field, H.-D. Försterling, On the oxybromine chemistry rate constants with cerium ions in the Field-Körös-Noyes mechanism of the Belousov-Zhabotinskii reaction: the equilibrium HBrO2 + BrO3- + H + <=> 2BrO2· + H2O. J. Phys. Chem. 90, 5400–5407 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. K. Ito and Ms. A. Deguchi for their dedication to conducting many experiments. Ms. Ito observed and analyzed the self-propelled motion of the BZ droplets, and Ms. Deguchi measured the surface pressure of MO and Br2MO. This work was supported in part by the Research Project Grant (B) of the Institute of Science and Technology of Meiji University (N.J.S.) and by the JGC-S Grant for Young Researchers (N.J.S.). This report is constructed based on the oral presentation on the Symposium “Complexity and Synergetics” in Hannover (2015), which was supported by the VW-foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiko J. Suematsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suematsu, N.J., Mori, Y., Amemiya, T., Nakata, S. (2018). Nonlinear Behavior of a Self-Propelled Droplet Coupled with a Chemical Oscillatory Reaction. In: Müller, S., Plath, P., Radons, G., Fuchs, A. (eds) Complexity and Synergetics. Springer, Cham. https://doi.org/10.1007/978-3-319-64334-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64334-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64333-5

  • Online ISBN: 978-3-319-64334-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics