Advertisement

Using the Internet of Things for Enhanced Support of Workers in Manufacturing

  • Carsten UllrichEmail author
  • Cédric Donati
  • David C. Pugh
  • Alex Gluhak
  • Anthony Garcia-Labiad
  • Xia Wang
Chapter

Abstract

Work processes such as assembly in manufacturing are often highly complex and change frequently due to today’s high rate of technological innovation. Thus, the usage of assistance services to support workers in assembly can result in significant benefits. However, adequate assistance requires knowledge about the actual actions of the workers. In this chapter, we present a use case in aviation, where a manufacturing environment that carries no sensors at all is extended with off-the-shelf sensors that enable capturing the effect of physical actions and, in consequence, adequate reactions of a support system. We also give an overview of technologies of the Internet of Things and a category of human errors in industry to simplify the replication of the described digitization in other workplaces.

Keywords

Manufacturing Assistance Sensors Workplace-based learning Adaptivity 

References

  1. Aehnelt, M., & Wegner, K. (2015). Learn but work! Towards self-directed learning at mobile assembly workplaces. In S. Lindstaedt, T. Ley, H. Sack (Eds), Proceedings of the 15th international conference on knowledge technologies and data-driven business (pp. 1–17), Graz, Austria: I-KNOW’15, October 21–23, 2015.Google Scholar
  2. Alm, R., Aehnelt, M., & Urban, B. (2015). Processing manufacturing knowledge with ontology-based annotations and cognitive architectures. In Proceedings of the 15th international conference on knowledge technologies and data-driven business. New York: ACM, pp.25:1–25:6.Google Scholar
  3. Ando, A., Itagaki, S., Takeno, H., Torii, T., & Davis, D. (2014). Development a multiple skill practice management and result feedback system for smart vocational learning by using smartphones. In 2014 IEEE 3rd global conference on consumer electronics (GCCE). IEEE, Tokyo, Japan.Google Scholar
  4. Arena, D., & Perdikakis, A. (2015). DELIVERABLE D2.2 knowledge model for human re-source optimization. Tech. rep., SatisFactory project.Google Scholar
  5. Bannat, A., Gast, J., Rehrl, T., Rösel, W., Rigoll, G., & Wallhoff, F. (2009). A multimodal human-robot-interaction scenario: Working together with an industrial robot. In J. Jacko (Ed.), Human-computer interaction. Novel interaction methods and techniques (Vol. 5611, pp. 303–311). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  6. Blümling, S., & Reithinger, N. (2015). Aufbereitung und Speicherung von Erfahrungswissen im PLuTO-Projekt. In 8. AAL-Kongress, Frankfurt/Main.Google Scholar
  7. Guest, W., Wild, F., Vovk, A., Fominykh, M., Limbu, B., Klemke, R., Sharma, P., Karjalainen, J., Smith, C., Rasool, J., Aswat, S., Helin, K., Mitri, D., & Schneider, J. (2017). Affordances for capturing and re-enacting expert performance with wearables. In Data driven approaches in digital education (pp. 403–409). Cham: Springer International Publishing.CrossRefGoogle Scholar
  8. Koper, R. (2014). Conditions for effective smart learning environments. Smart Learning Environments, 1, 5.CrossRefGoogle Scholar
  9. Lenz, C., Nair, S., Rickert, M., Knoll, A., Rosel, W., Gast, J., Bannat, A., & Wallhoff, F. (2008) Joint-action for humans and industrial robots for assembly tasks. In. The 17th IEEE international symposium on Robot and Human Interactive Communication, 2008. ROMAN 2008. IEEE, Munich, Germany (pp. 130–135).Google Scholar
  10. Lindblom, J., & Thorvald, P. (2014). Towards a framework for reducing cognitive load in manufacturing personnel. In K. Stanney & K. Hale (Eds.), Advances in cognitive engineering and neuroergonomics. AHFE, Krakow, Poland (pp. 233–244).Google Scholar
  11. Mavrikios, D., Papakostas, N., Mourtzis, D., & Chryssolouris, G. (2013). On industrial learning and training for the factories of the future: A conceptual, cognitive and technology framework. Journal of Intelligent Manufacturing, 24(3), 473.CrossRefGoogle Scholar
  12. Miorandi, D., Sicari, S., Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks, 10, 1497–1516.CrossRefGoogle Scholar
  13. Object Management Group (OMG) (2011). Object Management Group: Business Process Model and Notation (BPMN) Version 2.0. Tech. rep.Google Scholar
  14. Reason, J. (1991). Human error. New York: Cambridge University Press.Google Scholar
  15. Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: Bodies and minds moving together. Trends in Cognitive Sciences, 10, 70–76.CrossRefGoogle Scholar
  16. Sivanathan, A., Mcgibbon, S., Lim, T., Ritchie, J., & Abdel-Wahab, M. (2017). A cyber-physical gaming system for vocational training. In International design engineering technical conferences and computers and information in engineering conference. ASME, Cleveland, USA (Vol. 1).Google Scholar
  17. Stoessel, C., Wiesbeck, M., Stork, S., Zaeh, M., & Schuboe, A. (2008). Towards optimal worker assistance: Investigating cognitive processes in manual assembly. In M. Mitsuishi, K. Ueda, & F. Kimura (Eds.), Manufacturing systems and technologies for the new frontier (pp. 245–250). London: Springer.CrossRefGoogle Scholar
  18. Stork, A., Sevilmis, N., Weber, D., Gorecky, D., Stahl, C., Loskyll, M., & Michel, F. (2012). Enabling virtual assembly training in and beyond the automotive industry. In 2012 18th international conference on Virtual Systems and Multimedia (VSMM). IEEE, Milan, Italy (pp. 347–352).CrossRefGoogle Scholar
  19. Ullrich, C. (2016). Rules for adaptive learning and assistance on the shop floor. In D. Sampson, J. Spector, D. Ifenthaler, & P. Isaías (Eds.), Proceedings of 13th international conference on cognition and exploratory learning in digital age. IADIS Press, Mannheim, Germany (pp. 261–268).Google Scholar
  20. Ullrich, C., Aust, M., Blach, R., Dietrich, M., Igel, C., Kreggenfeld, N., Kahl, D., Prinz, C., & Schwantzer, S. (2015). Assistance- and knowledge-services for smart production. In S. Lindstaedt, T. Ley, H. Sack (Eds), Proceedings of the 15th international conference on knowledge technologies and data-driven business (pp. 40:1–40:4). Graz: I-KNOW’15.Google Scholar
  21. Wersborg, I., Borgwardt, F., & Diepold, K. (2009). Real-time cognitive technical systems, a learning material processing system, social and future aspects. In Advanced robotics and its social impacts. IEEE, Tokyo, Japan.Google Scholar
  22. Westerfield, G., Mitrovic, A., & Billinghurst, M. (2013). Intelligent augmented reality training for assembly tasks. In H. Lane, K. Yacef, J. Mostow, & P. Pavlik (Eds.), Artificial intelligence in education (pp. 542–551). Berlin: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carsten Ullrich
    • 1
    Email author
  • Cédric Donati
    • 2
  • David C. Pugh
    • 3
  • Alex Gluhak
    • 3
  • Anthony Garcia-Labiad
    • 3
  • Xia Wang
    • 1
  1. 1.DFKI GmbHBerlinGermany
  2. 2.Airbus OperationsHamburgGermany
  3. 3.Digital CatapultLondonUK

Personalised recommendations