Liver Resection Surgery: Anesthetic Management, Monitoring, Fluids and Electrolytes

  • Emmanuel Weiss
  • Jean Mantz
  • Catherine Paugam-Burtz
Chapter

Keywords

Risk assessment Ischemia-reperfusion injury Cardiac stresstest Hemodynamic monitoring Intravenous fluids Transfusion 

References

  1. 1.
    Jarnagin WR, Gonen M, Fong Y, et al. Improvement in perioperative outcome after hepatic resection: analysis of 1,803 consecutive cases over the past decade. Ann Surg. 2002;236:397–406; discussion 7.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Farges O, Goutte N, Bendersky N, Falissard B. Group AC-FHS. Incidence and risks of liver resection: an all-inclusive French nationwide study. Ann Surg. 2012;256:697–704; discussion 5.PubMedCrossRefGoogle Scholar
  3. 3.
    Kamiyama T, Nakanishi K, Yokoo H, et al. Perioperative management of hepatic resection toward zero mortality and morbidity: analysis of 793 consecutive cases in a single institution. J Am Coll Surg. 2010;211:443–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Konopke R, Kersting S, Bunk A, et al. Colorectal liver metastasis surgery: analysis of risk factors predicting postoperative complications in relation to the extent of resection. Int J Color Dis. 2009;24:687–97.CrossRefGoogle Scholar
  5. 5.
    Citterio D, Facciorusso A, Sposito C, Rota R, Bhoori S, Mazzaferro V. Hierarchic interaction of factors associated with liver decompensation after resection for hepatocellular carcinoma. JAMA Surg. 2016;151(9):846–53.PubMedCrossRefGoogle Scholar
  6. 6.
    Aussilhou B, Dokmak S, Faivre S, Paradis V, Vilgrain V, Belghiti J. Preoperative liver hypertrophy induced by portal flow occlusion before major hepatic resection for colorectal metastases can be impaired by bevacizumab. Ann Surg Oncol. 2009;16:1553–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Scoggins CR, Campbell ML, Landry CS, et al. Preoperative chemotherapy does not increase morbidity or mortality of hepatic resection for colorectal cancer metastases. Ann Surg Oncol. 2009;16:35–41.PubMedCrossRefGoogle Scholar
  8. 8.
    Belghiti J, Hiramatsu K, Benoist S, Massault P, Sauvanet A, Farges O. Seven hundred forty-seven hepatectomies in the 1990s: an update to evaluate the actual risk of liver resection. J Am Coll Surg. 2000;191:38–46.PubMedCrossRefGoogle Scholar
  9. 9.
    Schindl MJ, Redhead DN, Fearon KC, et al. The value of residual liver volume as a predictor of hepatic dysfunction and infection after major liver resection. Gut. 2005;54:289–96.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Mullen JT, Ribero D, Reddy SK, et al. Hepatic insufficiency and mortality in 1,059 noncirrhotic patients undergoing major hepatectomy. J Am Coll Surg. 2007;204:854–62; discussion 62–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Schroeder RA, Marroquin CE, Bute BP, Khuri S, Henderson WG, Kuo PC. Predictive indices of morbidity and mortality after liver resection. Ann Surg. 2006;243:373–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ercolani G, Ravaioli M, Grazi GL, et al. Use of vascular clamping in hepatic surgery: lessons learned from 1260 liver resections. Arch Surg. 2008;143:380–7; discussion 8.PubMedCrossRefGoogle Scholar
  13. 13.
    Imamura H, Seyama Y, Kokudo N, et al. One thousand fifty-six hepatectomies without mortality in 8 years. Arch Surg. 2003;138:1198–206; discussion 206.PubMedCrossRefGoogle Scholar
  14. 14.
    Belghiti J, Regimbeau JM, Durand F, et al. Resection of hepatocellular carcinoma: a European experience on 328 cases. Hepato-Gastroenterology. 2002;|49:41–6.PubMedGoogle Scholar
  15. 15.
    Adam R, Chiche L, Aloia T, et al. Hepatic resection for noncolorectal nonendocrine liver metastases: analysis of 1,452 patients and development of a prognostic model. Ann Surg. 2006;244:524–35.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    European Association for the Study of the L, European Organisation For R, Treatment of C. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56:908–43.CrossRefGoogle Scholar
  17. 17.
    Vibert E, Boleslawski E, Cosse C, et al. Arterial lactate concentration at the end of an elective hepatectomy is an early predictor of the postoperative course and a potential surrogate of intraoperative events. Ann Surg. 2015;262:787–92; discussion 92–3.PubMedCrossRefGoogle Scholar
  18. 18.
    Fleisher LA, Beckman JA, Brown KA, et al. ACC/AHA 2006 guideline update on perioperative cardiovascular evaluation for noncardiac surgery: focused update on perioperative beta-blocker therapy--a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to update the 2002 guidelines on perioperative cardiovascular evaluation for noncardiac surgery). Anesth Analg. 2007;104:15–26.PubMedCrossRefGoogle Scholar
  19. 19.
    Poldermans D, Bax JJ, Boersma E, et al. Guidelines for pre-operative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery: the task force for preoperative cardiac risk assessment and perioperative cardiac management in non-cardiac surgery of the European Society of Cardiology (ESC) and endorsed by the European Society of Anaesthesiology (ESA). Eur J Anaesthesiol. 2010;27:92–137.PubMedCrossRefGoogle Scholar
  20. 20.
    McFalls EO, Ward HB, Moritz TE, et al. Coronary-artery revascularization before elective major vascular surgery. N Engl J Med. 2004;351:2795–804.PubMedCrossRefGoogle Scholar
  21. 21.
    Dunkelgrun M, Boersma E, Schouten O, et al. Bisoprolol and fluvastatin for the reduction of perioperative cardiac mortality and myocardial infarction in intermediate-risk patients undergoing noncardiovascular surgery: a randomized controlled trial (DECREASE-IV). Ann Surg. 2009;249:921–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Group PS, Devereaux PJ, Yang H, et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet. 2008;371:1839–47.CrossRefGoogle Scholar
  23. 23.
    Wijeysundera DN, Duncan D, Nkonde-Price C, et al. Perioperative beta blockade in noncardiac surgery: a systematic review for the 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2014;64:2406–25.PubMedCrossRefGoogle Scholar
  24. 24.
    Mantz J, Samama CM, Tubach F, et al. Impact of preoperative maintenance or interruption of aspirin on thrombotic and bleeding events after elective non-cardiac surgery: the multicentre, randomized, blinded, placebo-controlled, STRATAGEM trial. Br J Anaesth. 2011;107:899–910.PubMedCrossRefGoogle Scholar
  25. 25.
    Oscarsson A, Gupta A, Fredrikson M, et al. To continue or discontinue aspirin in the perioperative period: a randomized, controlled clinical trial. Br J Anaesth. 2010;104:305–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Devereaux PJ, Mrkobrada M, Sessler DI, et al. Aspirin in patients undergoing noncardiac surgery. N Engl J Med. 2014;370:1494–503.PubMedCrossRefGoogle Scholar
  27. 27.
    Myles PS, Smith JA, Forbes A, et al. Stopping vs. continuing aspirin before coronary artery surgery. N Engl J Med. 2016;374:728–37.PubMedCrossRefGoogle Scholar
  28. 28.
    Nobili C, Marzano E, Oussoultzoglou E, et al. Multivariate analysis of risk factors for pulmonary complications after hepatic resection. Ann Surg. 2012;255:540–50.PubMedCrossRefGoogle Scholar
  29. 29.
    Slankamenac K, Breitenstein S, Held U, Beck-Schimmer B, Puhan MA, Clavien PA. Development and validation of a prediction score for postoperative acute renal failure following liver resection. Ann Surg. 2009;250:720–8.PubMedCrossRefGoogle Scholar
  30. 30.
    Corish CA, Kennedy NP. Protein-energy undernutrition in hospital in-patients. Br J Nutr. 2000;83:575–91.PubMedCrossRefGoogle Scholar
  31. 31.
    Gedaly R, McHugh PP, Johnston TD, Jeon H, Ranjan D, Davenport DL. Obesity, diabetes, and smoking are important determinants of resource utilization in liver resection: a multicenter analysis of 1029 patients. Ann Surg. 2009;249:414–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Harimoto N, Shirabe K, Yamashita YI, et al. Sarcopenia as a predictor of prognosis in patients following hepatectomy for hepatocellular carcinoma. Br J Surg. 2013;100:1523–30.PubMedCrossRefGoogle Scholar
  33. 33.
    Otsuji H, Yokoyama Y, Ebata T, et al. Preoperative sarcopenia negatively impacts postoperative outcomes following major hepatectomy with extrahepatic bile duct resection. World J Surg. 2015;39:1494–500.PubMedCrossRefGoogle Scholar
  34. 34.
    Voron T, Tselikas L, Pietrasz D, et al. Sarcopenia impacts on short- and long-term results of hepatectomy for hepatocellular carcinoma. Ann Surg. 2015;261:1173–83.PubMedCrossRefGoogle Scholar
  35. 35.
    Braga M, Gianotti L, Vignali A, Carlo VD. Preoperative oral arginine and n-3 fatty acid supplementation improves the immunometabolic host response and outcome after colorectal resection for cancer. Surgery. 2002;132:805–14.PubMedCrossRefGoogle Scholar
  36. 36.
    Braga M, Gianotti L, Radaelli G, et al. Perioperative immunonutrition in patients undergoing cancer surgery: results of a randomized double-blind phase 3 trial. Arch Surg. 1999;134:428–33.PubMedCrossRefGoogle Scholar
  37. 37.
    Ciacio O, Voron T, Pittau G, et al. Interest of preoperative immunonutrition in liver resection for cancer: study protocol of the PROPILS trial, a multicenter randomized controlled phase IV trial. BMC Cancer. 2014;14:980.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Servin FS, Bougeois B, Gomeni R, Mentre F, Farinotti R, Desmonts JM. Pharmacokinetics of propofol administered by target-controlled infusion to alcoholic patients. Anesthesiology. 2003;99:576–85.PubMedCrossRefGoogle Scholar
  39. 39.
    Passot S, Servin F, Pascal J, Charret F, Auboyer C, Molliex S. A comparison of target- and manually controlled infusion propofol and etomidate/desflurane anesthesia in elderly patients undergoing hip fracture surgery. Anesth Analg. 2005;100:1338–42; table of contents.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang ZX, Huang CY, Hua YP, Huang WQ, Deng LH, Liu KX. Dexmedetomidine reduces intestinal and hepatic injury after hepatectomy with inflow occlusion under general anaesthesia: a randomized controlled trial. Br J Anaesth. 2014;112:1055–64.PubMedCrossRefGoogle Scholar
  41. 41.
    Gatecel C, Losser MR, Payen D. The postoperative effects of halothane versus isoflurane on hepatic artery and portal vein blood flow in humans. Anesth Analg. 2003;96:740–5; table of contents.PubMedCrossRefGoogle Scholar
  42. 42.
    Yang LQ, Tao KM, Cheung CW, Liu YT, Tao Y, Wu FX, Yu WF. The effect of isoflurane or propofol anaesthesia on liver injury after partial hepatectomy in cirrhotic patients. Anaesthesia. 2010;65:1094–100.CrossRefGoogle Scholar
  43. 43.
    Song JC, Sun YM, Yang LQ, Zhang MZ, Lu ZJ, Yu WF. A comparison of liver function after hepatectomy with inflow occlusion between sevoflurane and propofol anesthesia. Anesth Analg. 2010;111:1036–41.PubMedGoogle Scholar
  44. 44.
    Clavien PA, Petrowsky H, DeOliveira ML, Graf R. Strategies for safer liver surgery and partial liver transplantation. N Engl J Med. 2007;356:1545–59.PubMedCrossRefGoogle Scholar
  45. 45.
    Rahbari NN, Wente MN, Schemmer P, et al. Systematic review and meta-analysis of the effect of portal triad clamping on outcome after hepatic resection. Br J Surg. 2008;95:424–32.PubMedCrossRefGoogle Scholar
  46. 46.
    Delva E, Camus Y, Paugam C, Parc R, Huguet C, Lienhart A. Hemodynamic effects of portal triad clamping in humans. Anesth Analg. 1987;66:864–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Delva E, Nordlinger B, Parc R, Lienhart A, Hannoun L, Huguet C. Hepatic vascular exclusion (HVE) for major liver resections. Int Surg. 1987;72:78–81.PubMedGoogle Scholar
  48. 48.
    Belghiti J, Noun R, Zante E, Ballet T, Sauvanet A. Portal triad clamping or hepatic vascular exclusion for major liver resection. A controlled study. Ann Surg. 1996;224:155–61.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Eyraud D, Richard O, Borie DC, et al. Hemodynamic and hormonal responses to the sudden interruption of caval flow: insights from a prospective study of hepatic vascular exclusion during major liver resections. Anesth Analg. 2002;95:1173–8; table of contents.PubMedCrossRefGoogle Scholar
  50. 50.
    Lai EC, Fan ST, Lo CM, Chu KM, Liu CL. Anterior approach for difficult major right hepatectomy. World J Surg. 1996;20:314–7; discussion 8.PubMedCrossRefGoogle Scholar
  51. 51.
    Ogata S, Belghiti J, Varma D, et al. Two hundred liver hanging maneuvers for major hepatectomy: a single-center experience. Ann Surg. 2007;245:31–5.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Zhai Y, Busuttil RW, Kupiec-Weglinski JW. Liver ischemia and reperfusion injury: new insights into mechanisms of innate-adaptive immune-mediated tissue inflammation. Am J Transplant. 2011;11:1563–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Selzner N, Rudiger H, Graf R, Clavien PA. Protective strategies against ischemic injury of the liver. Gastroenterology. 2003;125:917–36.PubMedCrossRefGoogle Scholar
  54. 54.
    Petrowsky H, McCormack L, Trujillo M, Selzner M, Jochum W, Clavien PA. A prospective, randomized, controlled trial comparing intermittent portal triad clamping versus ischemic preconditioning with continuous clamping for major liver resection. Ann Surg. 2006;244:921–8; discussion 8–30.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Scatton O, Zalinski S, Jegou D, et al. Randomized clinical trial of ischaemic preconditioning in major liver resection with intermittent Pringle manoeuvre. Br J Surg. 2011;98:1236–43.PubMedCrossRefGoogle Scholar
  56. 56.
    O’Neill S, Leuschner S, McNally SJ, Garden OJ, Wigmore SJ, Harrison EM. Meta-analysis of ischaemic preconditioning for liver resections. Br J Surg. 2013;100:1689–700.PubMedCrossRefGoogle Scholar
  57. 57.
    Benzoni E, Lorenzin D, Baccarani U, et al. Resective surgery for liver tumor: a multivariate analysis of causes and risk factors linked to postoperative complications. Hepatobiliary Pancreat Dis Int. 2006;5:526–33.PubMedGoogle Scholar
  58. 58.
    Beck-Schimmer B, Breitenstein S, Urech S, et al. A randomized controlled trial on pharmacological preconditioning in liver surgery using a volatile anesthetic. Ann Surg. 2008;248:909–18.PubMedCrossRefGoogle Scholar
  59. 59.
    Beck-Schimmer B, Breitenstein S, Bonvini JM, et al. Protection of pharmacological postconditioning in liver surgery: results of a prospective randomized controlled trial. Ann Surg. 2012;256:837–44. discission 44–5PubMedCrossRefGoogle Scholar
  60. 60.
    Ryter SW, Alam J, Choi AM. Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol Rev. 2006;86:583–650.PubMedCrossRefGoogle Scholar
  61. 61.
    Barrier A, Olaya N, Chiappini F, et al. Ischemic preconditioning modulates the expression of several genes, leading to the overproduction of IL-1Ra, iNOS, and Bcl-2 in a human model of liver ischemia-reperfusion. FASEB J. 2005;19:1617–26.PubMedCrossRefGoogle Scholar
  62. 62.
    Muller-Edenborn B, Frick R, Piegeler T, et al. Volatile anaesthetics reduce neutrophil inflammatory response by interfering with CXC receptor-2 signalling. Br J Anaesth. 2015;114:143–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Yang LQ, Tao KM, Liu YT, et al. Remifentanil preconditioning reduces hepatic ischemia-reperfusion injury in rats via inducible nitric oxide synthase expression. Anesthesiology. 2011;114:1036–47.PubMedCrossRefGoogle Scholar
  64. 64.
    Simillis C, Robertson FP, Afxentiou T, Davidson BR, Gurusamy KS. A network meta-analysis comparing perioperative outcomes of interventions aiming to decrease ischemia reperfusion injury during elective liver resection. Surgery. 2016;159:1157–69.PubMedCrossRefGoogle Scholar
  65. 65.
    Marsman HA, de Graaf W, Heger M, et al. Hepatic regeneration and functional recovery following partial liver resection in an experimental model of hepatic steatosis treated with omega-3 fatty acids. Br J Surg. 2013;100:674–83.PubMedCrossRefGoogle Scholar
  66. 66.
    Raptis DA, Limani P, Jang JH, et al. GPR120 on Kupffer cells mediates hepatoprotective effects of omega3-fatty acids. J Hepatol. 2014;60:625–32.PubMedCrossRefGoogle Scholar
  67. 67.
    Linecker M, Limani P, Botea F, et al. A randomized, double-blind study of the effects of omega-3 fatty acids (Omegaven) on outcome after major liver resection. BMC Gastroenterol. 2015;15:102.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hamilton MA, Cecconi M, Rhodes A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth Analg. 2011;112:1392–402.PubMedCrossRefGoogle Scholar
  69. 69.
    Grocott MP, Dushianthan A, Hamilton MA, et al. Perioperative increase in global blood flow to explicit defined goals and outcomes following surgery. Cochrane Database Syst Rev. 2012;11:CD004082.PubMedGoogle Scholar
  70. 70.
    Pearse RM, Harrison DA, MacDonald N, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311:2181–90.PubMedCrossRefGoogle Scholar
  71. 71.
    Gomez-Izquierdo JC, Feldman LS, Carli F, Baldini G. Meta-analysis of the effect of goal-directed therapy on bowel function after abdominal surgery. Br J Surg. 2015;102:577–89.PubMedCrossRefGoogle Scholar
  72. 72.
    Li Z, Sun YM, Wu FX, Yang LQ, Lu ZJ, Yu WF. Controlled low central venous pressure reduces blood loss and transfusion requirements in hepatectomy. World J Gastroenterol. 2014;20:303–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ziser A, Plevak DJ, Wiesner RH, Rakela J, Offord KP, Brown DL. Morbidity and mortality in cirrhotic patients undergoing anesthesia and surgery. Anesthesiology. 1999;90:42–53.PubMedCrossRefGoogle Scholar
  74. 74.
    Michard F, Chemla D, Richard C, et al. Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med. 1999;159:935–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Salzwedel C, Puig J, Carstens A, et al. Perioperative goal-directed hemodynamic therapy based on radial arterial pulse pressure variation and continuous cardiac index trending reduces postoperative complications after major abdominal surgery: a multi-center, prospective, randomized study. Crit Care. 2013;17:R191.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Goepfert MS, Richter HP, Zu Eulenburg C, et al. Individually optimized hemodynamic therapy reduces complications and length of stay in the intensive care unit: a prospective, randomized controlled trial. Anesthesiology. 2013;119:824–36.PubMedCrossRefGoogle Scholar
  77. 77.
    Ramsingh DS, Sanghvi C, Gamboa J, Cannesson M, Applegate RL 2nd. Outcome impact of goal directed fluid therapy during high risk abdominal surgery in low to moderate risk patients: a randomized controlled trial. J Clin Monit Comput. 2013;27:249–57.PubMedCrossRefGoogle Scholar
  78. 78.
    Futier E, Constantin JM, Paugam-Burtz C, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369:428–37.PubMedCrossRefGoogle Scholar
  79. 79.
    De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31:517–23.PubMedCrossRefGoogle Scholar
  80. 80.
    Duperret S, Lhuillier F, Piriou V, et al. Increased intra-abdominal pressure affects respiratory variations in arterial pressure in normovolaemic and hypovolaemic mechanically ventilated healthy pigs. Intensive Care Med. 2007;33:163–71.PubMedCrossRefGoogle Scholar
  81. 81.
    Michard F, Chemla D, Teboul JL. Applicability of pulse pressure variation: how many shades of grey? Crit Care. 2015;19:144.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Lahner D, Kabon B, Marschalek C, et al. Evaluation of stroke volume variation obtained by arterial pulse contour analysis to predict fluid responsiveness intraoperatively. Br J Anaesth. 2009;103:346–51.PubMedCrossRefGoogle Scholar
  83. 83.
    Derichard A, Robin E, Tavernier B, et al. Automated pulse pressure and stroke volume variations from radial artery: evaluation during major abdominal surgery. Br J Anaesth. 2009;103:678–84.PubMedCrossRefGoogle Scholar
  84. 84.
    de Wilde RB, de Wit F, Geerts BF, et al. Non-invasive continuous arterial pressure and pulse pressure variation measured with Nexfin((R)) in patients following major upper abdominal surgery: a comparative study. Anaesthesia. 2016;71:788–97.PubMedCrossRefGoogle Scholar
  85. 85.
    Abbas SM, Hill AG. Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia. 2008;63:44–51.PubMedCrossRefGoogle Scholar
  86. 86.
    Grocott MP, Mythen MG, Gan TJ. Perioperative fluid management and clinical outcomes in adults. Anesth Analg. 2005;100:1093–106.PubMedCrossRefGoogle Scholar
  87. 87.
    Wakeling HG, McFall MR, Jenkins CS, et al. Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth. 2005;95:634–42.PubMedCrossRefGoogle Scholar
  88. 88.
    Halpern SD, Taichman DB. Misclassification of pulmonary hypertension due to reliance on pulmonary capillary wedge pressure rather than left ventricular end-diastolic pressure. Chest. 2009;136:37–43.PubMedCrossRefGoogle Scholar
  89. 89.
    Dahmani S, Paugam-Burtz C, Gauss T, et al. Comparison of central and mixed venous saturation during liver transplantation in cirrhotic patients: a pilot study. Eur J Anaesthesiol. 2010;27:714–9.PubMedGoogle Scholar
  90. 90.
    Burtenshaw AJ, Isaac JL. The role of trans-oesophageal echocardiography for perioperative cardiovascular monitoring during orthotopic liver transplantation. Liver Transpl. 2006;12:1577–83.PubMedCrossRefGoogle Scholar
  91. 91.
    Planinsic RM, Nicolau-Raducu R, Caldwell JC, Aggarwal S, Hilmi I. Transesophageal echocardiography-guided placement of internal jugular percutaneous venovenous bypass cannula in orthotopic liver transplantation. Anesth Analg. 2003;97:648–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Burger-Klepp U, Karatosic R, Thum M, et al. Transesophageal echocardiography during orthotopic liver transplantation in patients with esophagoastric varices. Transplantation. 2012;94:192–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Pantham G, Waghray N, Einstadter D, Finkelhor RS, Mullen KD. Bleeding risk in patients with esophageal varices undergoing transesophageal echocardiography. Echocardiography. 2013;30:1152–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Pissarra F, Oliveira A, Marcelino P. Transoesophageal echocardiography for monitoring liver surgery: data from a pilot study. Cardiol Res Pract. 2012;2012:723418.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Corcoran T, Rhodes JE, Clarke S, Myles PS, Ho KM. Perioperative fluid management strategies in major surgery: a stratified meta-analysis. Anesth Analg. 2012;114:640–51.PubMedCrossRefGoogle Scholar
  96. 96.
    Cecconi M, Corredor C, Arulkumaran N, et al. Clinical review: goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Crit Care. 2013;17:209.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Stephan F, Rezaiguia-Delclaux S. Usefulness of a central venous catheter during hepatic surgery. Acta Anaesthesiol Scand. 2008;52:388–96.PubMedCrossRefGoogle Scholar
  98. 98.
    Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Jones RM, Moulton CE, Hardy KJ. Central venous pressure and its effect on blood loss during liver resection. Br J Surg. 1998;85:1058–60.PubMedCrossRefGoogle Scholar
  100. 100.
    Choi SJ, Gwak MS, Ko JS, et al. Can peripheral venous pressure be an alternative to central venous pressure during right hepatectomy in living donors? Liver Transpl. 2007;13:1414–21.PubMedCrossRefGoogle Scholar
  101. 101.
    Schroeder RA, Kuo PC. Pro: low central venous pressure during liver transplantation--not too low. J Cardiothorac Vasc Anesth. 2008;22:311–4.PubMedCrossRefGoogle Scholar
  102. 102.
    Massicotte L, Beaulieu D, Thibeault L. Con: low central venous pressure during liver transplantation. J Cardiothorac Vasc Anesth. 2008;22:315–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Niemann CU, Feiner J, Behrends M, Eilers H, Ascher NL, Roberts JP. Central venous pressure monitoring during living right donor hepatectomy. Liver Transpl. 2007;13:266–71.PubMedCrossRefGoogle Scholar
  104. 104.
    Melendez JA, Arslan V, Fischer ME, et al. Perioperative outcomes of major hepatic resections under low central venous pressure anesthesia: blood loss, blood transfusion, and the risk of postoperative renal dysfunction. J Am Coll Surg. 1998;187:620–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Smyrniotis V, Kostopanagiotou G, Theodoraki K, Tsantoulas D, Contis JC. The role of central venous pressure and type of vascular control in blood loss during major liver resections. Am J Surg. 2004;187:398–402.PubMedCrossRefGoogle Scholar
  106. 106.
    Massicotte L, Lenis S, Thibeault L, Sassine MP, Seal RF, Roy A. Effect of low central venous pressure and phlebotomy on blood product transfusion requirements during liver transplantations. Liver Transpl. 2006;12:117–23.PubMedCrossRefGoogle Scholar
  107. 107.
    Feng ZY, Xu X, Zhu SM, Bein B, Zheng SS. Effects of low central venous pressure during preanhepatic phase on blood loss and liver and renal function in liver transplantation. World J Surg. 2010;34:1864–73.PubMedCrossRefGoogle Scholar
  108. 108.
    Sondergaard S, Parkin G, Aneman A. Central venous pressure: we need to bring clinical use into physiological context. Acta Anaesthesiol Scand. 2015;59:552–60.PubMedCrossRefGoogle Scholar
  109. 109.
    Gurusamy KS, Li J, Vaughan J, Sharma D, Davidson BR. Cardiopulmonary interventions to decrease blood loss and blood transfusion requirements for liver resection. Cochrane Database Syst Rev. 2012;5:CD007338.Google Scholar
  110. 110.
    Zarychanski R, Abou-Setta AM, Turgeon AF, et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA. 2013;309:678–88.PubMedCrossRefGoogle Scholar
  111. 111.
    Myburgh JA, Finfer S, Bellomo R, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–11.PubMedCrossRefGoogle Scholar
  112. 112.
    Bayer O, Reinhart K, Kohl M, et al. Effects of fluid resuscitation with synthetic colloids or crystalloids alone on shock reversal, fluid balance, and patient outcomes in patients with severe sepsis: a prospective sequential analysis. Crit Care Med. 2012;40:2543–51.PubMedCrossRefGoogle Scholar
  113. 113.
    Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;2:CD000567.Google Scholar
  114. 114.
    Navickis RJ, Haynes GR, Wilkes MM. Effect of hydroxyethyl starch on bleeding after cardiopulmonary bypass: a meta-analysis of randomized trials. J Thorac Cardiovasc Surg. 2012;144:223–30.PubMedCrossRefGoogle Scholar
  115. 115.
    Rioux JP, Lessard M, De Bortoli B, et al. Pentastarch 10% (250 kDa/0.45) is an independent risk factor of acute kidney injury following cardiac surgery. Crit Care Med. 2009;37:1293–8.PubMedCrossRefGoogle Scholar
  116. 116.
    Hand WR, Whiteley JR, Epperson TI, et al. Hydroxyethyl starch and acute kidney injury in orthotopic liver transplantation: a single-center retrospective review. Anesth Analg. 2015;120:619–26.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Skhirtladze K, Base EM, Lassnigg A, et al. Comparison of the effects of albumin 5%, hydroxyethyl starch 130/0.4 6%, and Ringer’s lactate on blood loss and coagulation after cardiac surgery. Br J Anaesth. 2014;112:255–64.PubMedCrossRefGoogle Scholar
  118. 118.
    Martin C, Jacob M, Vicaut E, Guidet B, Van Aken H, Kurz A. Effect of waxy maize-derived hydroxyethyl starch 130/0.4 on renal function in surgical patients. Anesthesiology. 2013;118:387–94.PubMedCrossRefGoogle Scholar
  119. 119.
    Gillies MA, Habicher M, Jhanji S, et al. Incidence of postoperative death and acute kidney injury associated with i.v. 6% hydroxyethyl starch use: systematic review and meta-analysis. Br J Anaesth. 2014;112:25–34.PubMedCrossRefGoogle Scholar
  120. 120.
    Futier E, Biais M, Godet T, et al. Fluid loading in abdominal surgery—saline versus hydroxyethyl starch (FLASH Trial): study protocol for a randomized controlled trial. Trials. 2015;16:582.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308:1566–72.PubMedCrossRefGoogle Scholar
  122. 122.
    Reid F, Lobo DN, Williams RN, Rowlands BJ, Allison SP. (Ab)normal saline and physiological Hartmann’s solution: a randomized double-blind crossover study. Clin Sci (Lond). 2003;104:17–24.Google Scholar
  123. 123.
    McCluskey SA, Karkouti K, Wijeysundera D, Minkovich L, Tait G, Beattie WS. Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study. Anesth Analg. 2013;117:412–21.PubMedCrossRefGoogle Scholar
  124. 124.
    Burdett E, Dushianthan A, Bennett-Guerrero E, et al. Perioperative buffered versus non-buffered fluid administration for surgery in adults. Cochrane Database Syst Rev. 2012;12:CD004089.PubMedGoogle Scholar
  125. 125.
    Young P, Bailey M, Beasley R, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA. 2015;314:1701–10.PubMedCrossRefGoogle Scholar
  126. 126.
    Sima CS, Jarnagin WR, Fong Y, et al. Predicting the risk of perioperative transfusion for patients undergoing elective hepatectomy. Ann Surg. 2009;250:914–21.PubMedCrossRefGoogle Scholar
  127. 127.
    Pulitano C, Arru M, Bellio L, Rossini S, Ferla G, Aldrighetti L. A risk score for predicting perioperative blood transfusion in liver surgery. Br J Surg. 2007;94:860–5.PubMedCrossRefGoogle Scholar
  128. 128.
    Janny S, Eurin M, Dokmak S, Toussaint A, Farges O, Paugam-Burtz C. Assessment of the external validity of a predictive score for blood transfusion in liver surgery. HPB (Oxford). 2015;17:357–61.CrossRefGoogle Scholar
  129. 129.
    Spahn DR, Moch H, Hofmann A, Isbister JP. Patient blood management: the pragmatic solution for the problems with blood transfusions. Anesthesiology. 2008;109:951–3.CrossRefPubMedGoogle Scholar
  130. 130.
    Katz SC, Shia J, Liau KH, et al. Operative blood loss independently predicts recurrence and survival after resection of hepatocellular carcinoma. Ann Surg. 2009;249:617–23.PubMedCrossRefGoogle Scholar
  131. 131.
    Atzil S, Arad M, Glasner A, et al. Blood transfusion promotes cancer progression: a critical role for aged erythrocytes. Anesthesiology. 2008;109:989–97.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Wu CC, Ho WM, Cheng SB, et al. Perioperative parenteral tranexamic acid in liver tumor resection: a prospective randomized trial toward a “blood transfusion”-free hepatectomy. Ann Surg. 2006;243:173–80.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Schmidt A, Sues HC, Siegel E, Peetz D, Bengtsson A, Gervais HW. Is cell salvage safe in liver resection? A pilot study. J Clin Anesth. 2009;21:579–84.PubMedCrossRefGoogle Scholar
  134. 134.
    Gurusamy KS, Li J, Sharma D, Davidson BR. Pharmacological interventions to decrease blood loss and blood transfusion requirements for liver resection. Cochrane Database Syst Rev. 2009;4:CD008085.Google Scholar
  135. 135.
    Dalmau A, Sabate A, Acosta F, et al. Tranexamic acid reduces red cell transfusion better than epsilon-aminocaproic acid or placebo in liver transplantation. Anesth Analg. 2000;91:29–34.PubMedCrossRefGoogle Scholar
  136. 136.
    Lodge JP, Jonas S, Oussoultzoglou E, et al. Recombinant coagulation factor VIIa in major liver resection: a randomized, placebo-controlled, double-blind clinical trial. Anesthesiology. 2005;102:269–75.PubMedCrossRefGoogle Scholar
  137. 137.
    de Saint MG, Pequignot F, Auroy Y, et al. Patient blood management and transfusion. Anesthesiology. 2009;111:444–5. author reply 5–6Google Scholar
  138. 138.
    Lienhart A, Auroy Y, Pequignot F, et al. Survey of anesthesia-related mortality in France. Anesthesiology. 2006;105:1087–97.PubMedCrossRefGoogle Scholar
  139. 139.
    Jarnagin WR, Gonen M, Maithel SK, et al. A prospective randomized trial of acute normovolemic hemodilution compared to standard intraoperative management in patients undergoing major hepatic resection. Ann Surg. 2008;248:360–9.PubMedGoogle Scholar
  140. 140.
    Tripodi A, Mannucci PM. The coagulopathy of chronic liver disease. N Engl J Med. 2011;365:147–56.PubMedCrossRefGoogle Scholar
  141. 141.
    Mallett SV, Sugavanam A, Krzanicki DA, et al. Alterations in coagulation following major liver resection. Anaesthesia. 2016;71:657–68.PubMedCrossRefGoogle Scholar
  142. 142.
    Levin MA, McCormick PJ, Lin HM, Hosseinian L, Fischer GW. Low intraoperative tidal volume ventilation with minimal PEEP is associated with increased mortality. Br J Anaesth. 2014;113:97–108.PubMedCrossRefGoogle Scholar
  143. 143.
    Johnson M, Mannar R, Wu AV. Correlation between blood loss and inferior vena caval pressure during liver resection. Br J Surg. 1998;85:188–90.PubMedCrossRefGoogle Scholar
  144. 144.
    McNally SJ, Revie EJ, Massie LJ, et al. Factors in perioperative care that determine blood loss in liver surgery. HPB (Oxford). 2012;14:236–41.CrossRefGoogle Scholar
  145. 145.
    Lansdorp B, Hofhuizen C, van Lavieren M, et al. Mechanical ventilation-induced intrathoracic pressure distribution and heart-lung interactions*. Crit Care Med. 2014;42:1983–90.PubMedCrossRefGoogle Scholar
  146. 146.
    Kehlet H, Dahl JB. Anaesthesia, surgery, and challenges in postoperative recovery. Lancet. 2003;362:1921–8.PubMedCrossRefGoogle Scholar
  147. 147.
    Gustafsson UO, Scott MJ, Schwenk W, et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS((R))) Society recommendations. World J Surg. 2013;37:259–84.PubMedCrossRefGoogle Scholar
  148. 148.
    Geltzeiler CB, Rotramel A, Wilson C, Deng L, Whiteford MH, Frankhouse J. Prospective study of colorectal enhanced recovery after surgery in a community hospital. JAMA Surg. 2014;149:955–61.PubMedCrossRefGoogle Scholar
  149. 149.
    Page AJ, Ejaz A, Spolverato G, et al. Enhanced recovery after surgery protocols for open hepatectomy--physiology, immunomodulation, and implementation. J Gastrointest Surg. 2015;19:387–99.PubMedCrossRefGoogle Scholar
  150. 150.
    Schultz NA, Larsen PN, Klarskov B, et al. Evaluation of a fast-track programme for patients undergoing liver resection. Br J Surg. 2013;100:138–43.PubMedCrossRefGoogle Scholar
  151. 151.
    Hughes MJ, McNally S, Wigmore SJ. Enhanced recovery following liver surgery: a systematic review and meta-analysis. HPB (Oxford). 2014;16:699–706.CrossRefGoogle Scholar
  152. 152.
    Pessaux P, Regimbeau JM, Dondero F, Plasse M, Mantz J, Belghiti J. Randomized clinical trial evaluating the need for routine nasogastric decompression after elective hepatic resection. Br J Surg. 2007;94:297–303.PubMedCrossRefGoogle Scholar
  153. 153.
    Page AJ, Gani F, Crowley KT, et al. Patient outcomes and provider perceptions following implementation of a standardized perioperative care pathway for open liver resection. Br J Surg. 2016;103:564–71.PubMedCrossRefGoogle Scholar
  154. 154.
    Jones C, Kelliher L, Dickinson M, et al. Randomized clinical trial on enhanced recovery versus standard care following open liver resection. Br J Surg. 2013;100:1015–24.PubMedCrossRefGoogle Scholar
  155. 155.
    Bonnet F, Marret E. Influence of anaesthetic and analgesic techniques on outcome after surgery. Br J Anaesth. 2005;95:52–8.PubMedCrossRefGoogle Scholar
  156. 156.
    Tzimas P, Prout J, Papadopoulos G, Mallett SV. Epidural anaesthesia and analgesia for liver resection. Anaesthesia. 2013;68:628–35.PubMedCrossRefGoogle Scholar
  157. 157.
    De Pietri L, Siniscalchi A, Reggiani A, et al. The use of intrathecal morphine for postoperative pain relief after liver resection: a comparison with epidural analgesia. Anesth Analg. 2006;102:1157–63.PubMedCrossRefGoogle Scholar
  158. 158.
    Hughes MJ, Harrison EM, Peel NJ, et al. Randomized clinical trial of perioperative nerve block and continuous local anaesthetic infiltration via wound catheter versus epidural analgesia in open liver resection (LIVER 2 trial). Br J Surg. 2015;102:1619–28.PubMedCrossRefGoogle Scholar
  159. 159.
    Coelho FF, Kruger JA, Fonseca GM, et al. Laparoscopic liver resection: experience based guidelines. World J Gastrointest Surg. 2016;8:5–26.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Schiffman SC, Kim KH, Tsung A, Marsh JW, Geller DA. Laparoscopic versus open liver resection for metastatic colorectal cancer: a metaanalysis of 610 patients. Surgery. 2015;157:211–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Emmanuel Weiss
    • 1
    • 2
  • Jean Mantz
    • 3
  • Catherine Paugam-Burtz
    • 1
    • 2
  1. 1.Department of Anesthesiology and Critical Care MedecineBeaujon, HUPNVS, Assistance Publique-Hôpitaux de Paris (AP-HP)ParisFrance
  2. 2.University Paris VII, Paris DiderotParisFrance
  3. 3.Department of Anesthesiology and Critical Care MedicineHEGP, APHPParisFrance

Personalised recommendations