Magnetic Properties of the Iron–Nickel System: Pressure, Composition, and Grain Size

  • Michael WackEmail author
  • Michael Volk
  • Qingguo Wei
Part of the Astrophysics and Space Science Library book series (ASSL, volume 448)


We present an introduction to FeNi alloys as they appear in nature and how their magnetic properties can be studied in the laboratory. Meteorites provide natural samples which can carry information about our early Solar System and the magnetic fields present at that time. Grain size, and therefore domain state, of magnetic particles is the key to understanding their ability to record magnetic information on geological time scales. Material specific properties can be easier studied and optimized for technological applications from synthetic samples. We present common synthesis methods as well as analytical procedures to analyze the composition, crystal structure, grain size, and magnetic properties of FeNi alloys. We present data compiled from the literature together with our own results from samples synthesized by mechanical alloying and melting. In particular, we demonstrate changes in hysteresis and backfield parameters as well as Curie temperatures linked to composition, pressure, and alloying. The single-domain (SD) threshold in FeNi alloys remains unknown due to methodical limits in grain size and strong magnetic interactions between individual particles.



Funding was provided through the Deutsche Forschungsgemeinschaft (DFG) projects WA 3402/1-1 and GI712/7-1. We thank Martin Leberer and Johannes Heinbuch for assistance in the laboratory and Bernd Maier for supplying X-ray data. FRITSCH GmbH provided technical support for the ball mill. A review by Jérôme Gattacceca helped to improve the manuscript.


  1. Akdogan, N.G., Hadjipanayis, G.C., Sellmyer, D.J.: Anisotropic Sm-(Co,Fe) nanoparticles by surfactant-assisted ball milling. J. Appl. Phys. 105(7), 07A710 (2009)CrossRefGoogle Scholar
  2. Bassett, W.A.: Diamond anvil cell, 50th birthday. High Pressure Res. 29(2), 163–186 (2009). doi:10.1080/08957950802597239ADSCrossRefGoogle Scholar
  3. Bolsoni, R., Drago, V., Lima, E. Jr.: Chemical synthesis and characterization of a nanometric fe50ni50 alloy. Mater. Sci. Forum 403, 51–56 (2002). doi:10.4028/
  4. Buchwald, V.F.: The mineralogy of iron meteorites. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 286(1336), 453–491 (1977)ADSCrossRefGoogle Scholar
  5. Butler, R.F., Banerjee, S.K.: Single-domain grain-size limits for metallic iron. J. Geophys. Res.: Solid Earth 80(2), 252–259ADSCrossRefGoogle Scholar
  6. Cao, J., Qin, Y., Li, M., Zhao, S., Li, J.: Sol–gel combustion synthesis of magnetic MnFe2O4 oxide and FeNi alloy: product dependence on the reduction ability. Appl. Phys. A 117(4), 2019–2023 (2014) doi:10.1007/s00339-014-8611-0ADSCrossRefGoogle Scholar
  7. Chakka, V.M., Altuncevahir, B., Jin, Z.Q., Li, Y., Liu, J.P.: Magnetic nanoparticles produced by surfactant-assisted ball milling. J. Appl. Phys. 99(8), 08E912 (2006)CrossRefGoogle Scholar
  8. Chau, J.L.H.: Synthesis of Ni and bimetallic FeNi nanopowders by microwave plasma method. Mater. Lett. 61(13), 2753–2756 (2007). doi:10.1016/j.matlet.2006.04.125CrossRefGoogle Scholar
  9. Chen, Y.C., Zheng, F.C., Min, Y.L., Wang, T., Zhao, Y.G.: Synthesis and properties of magnetic FeNi3 alloyed microchains obtained by hydrothermal reduction. Solid State Sci. 14(7), 809–813 (2012). doi:10.1016/j.solidstatesciences.2012.04.006ADSCrossRefGoogle Scholar
  10. Cheung, C., Djuanda, F., Erb, U., Palumbo, G.: Electrodeposition of nanocrystalline Ni-Fe alloys. Nanostruct. Mater. 5(5), 513–523 (1995). doi:10.1016/0965-9773(95)00264-FCrossRefGoogle Scholar
  11. Clarke, R.S., Scott, E.R.D.: Tetrataenite; ordered FeNi, a new mineral in meteorites. Am. Miner. 65(7–8), 624–630 (1980)ADSGoogle Scholar
  12. Crangle, J., Goodman, G.M.: The magnetization of pure iron and nickel. Proc. R. Soc. A: Math. Phys. Eng. Sci. 321(1547), 477–491ADSCrossRefGoogle Scholar
  13. Crangle, J., Hallam, G.C.: The magnetization of face-centred cubic and body-centred cubic iron + nickel alloys. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 272(1348), 119–132 (1963)ADSCrossRefGoogle Scholar
  14. Davarpanah, A.M., Mirzae, A.A., Sargazi, M., Feizi, M.: Magnetic properties of Fe-Ni nanoparticles prepared by co-precipitation method. J. Phys.: Conf. Ser. 126(1), 012065 (2008). doi:10.1088/1742-6596/126/1/012065CrossRefGoogle Scholar
  15. Day, R., Fuller, M.D., Schmidt, V.: Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Inter. 13(4), 260–267 (1977)ADSCrossRefGoogle Scholar
  16. Ding, J., Li, Y.Y., Shi, Y., Chen, L.F., Deng, C.R., Fuh, S.H., Li, Y.: A structural, magnetic and microwave study on mechanically milled Fe-based alloy powders. J. Magn. Magn. Mater. 247(3), 249–256 (2002)ADSCrossRefGoogle Scholar
  17. Djekoun, A., Boudinar, N., Chebli, A., Otmani, A., Benabdeslem, M., Bouzabata, B., Greneche, J.M.: Characterization of Fe and Fe50Ni50 ultrafine nanoparticles synthesized by inert gas-condensation method. Physica B: Condens. Matter 404(20), 3824–3829 (2009a). doi:10.1016/j.physb.2009.07.074ADSCrossRefGoogle Scholar
  18. Djekoun, A., Boudinar, N., Chebli, A., Otmani, A., Benabdeslem, M., Bouzabata, B., Greneche, J.M.: Structure and magnetic properties of Fe-rich nanostructured Fe100−XNiX powders obtained by mechanical alloying. Phys. Proc. 2(3), 693–700 (2009b)ADSCrossRefGoogle Scholar
  19. Dong, X.L., Zhang, Z.D., Zhao, X.G., Chuang, Y.C., Jin, S.R., Sun, W.M.: The preparation and characterization of ultrafine Fe–Ni particles. J. Mater. Res. 14(2), 398–406 (1999). doi:10.1557/JMR.1999.0058ADSCrossRefGoogle Scholar
  20. Dubrovinskaia, N., Dubrovinsky, L., Solopova, N.A., Abakumov, A., Turner, S., Hanfland, M., Bykova, E., Bykov, M., Prescher, C., Prakapenka, V.B., Petitgirard, S., Chuvashova, I., Gasharova, B., Mathis, Y.L., Ershov, P., Snigireva, I., Snigirev, A.: Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv. 2(7) (2016). doi:10.1126/sciadv.1600341. Scholar
  21. Dunlop, D.J.: The rock magnetism of fine particles. Phys. Earth Planet. Inter. 26(1-2), 1–26 (1981)ADSMathSciNetCrossRefGoogle Scholar
  22. Dunlop, D.J.: Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res.: Solid Earth 107(B3), 2056 (2002)Google Scholar
  23. Dunlop, D.J., Özdemir, Ö.: Rock Magnetism. Fundamentals and Frontiers. Cambridge University Press, Cambridge (1997)CrossRefGoogle Scholar
  24. Eastman, J.A., Beno, M.A., Knapp, G.S., Thompson, L.J.: X-ray diffraction characterization of defect behavior in nanocrystalline nickel during annealing. Nanostruct. Mater. 6(5), 543–546 (1995). doi:10.1016/0965-9773(95)00116-6CrossRefGoogle Scholar
  25. Gaffet, E., Hamzaoui, R., Elkedim, O.: Milling conditions effect on structure and magnetic properties of mechanically alloyed Fe–10% Ni and Fe–20% Ni alloys. Mater. Sci. Eng. A 381(1–2), 363–371 (2004)Google Scholar
  26. Gattacceca, J., Rochette, P.: Toward a robust normalized magnetic paleointensity method applied to meteorites. Earth Planet. Sci. Lett. 227(3–4), 377–393 (2004). doi:10.1016/j.epsl.2004.09.013ADSCrossRefGoogle Scholar
  27. Gilbert, A., Owen, W.: Diffusionless transformation in iron–nickel, iron-chromium and iron-silicon alloys. Acta Metall. 10(1), 45–54 (1962). doi:10.1016/0001-6160(62)90185-2CrossRefGoogle Scholar
  28. Gilder, S.A., Egli, R., Hochleitner, R., Roud, S.C., Volk, M.W.R., Le Goff, M., de Wit, M.: Anatomy of a pressure-induced, ferromagnetic-to-paramagnetic transition in pyrrhotite: implications for the formation pressure of diamonds. J. Geophys. Res.: Solid Earth 116(B10), B10101 (2011). doi:10.1029/2011JB008292Google Scholar
  29. Goldstein, J.I., Yang, J., Kotula, P.G., Michael, J.R., Scott, E.R.D.: Thermal histories of IVA iron meteorites from transmission electron microscopy of the cloudy zone microstructure. Meteorit. Planet. Sci. 44(3), 343–358 (2009). doi:10.1111/j.1945-5100.2009.tb00737.xADSCrossRefGoogle Scholar
  30. Goldstein, J.I., Yang, J., Scott, E.R.D.: Determining cooling rates of iron and stony-iron meteorites from measurements of Ni and Co at kamacite–taenite interfaces. Geochim. Cosmochim. Acta 140, 297–320 (2014). doi:10.1016/j.gca.2014.05.025ADSCrossRefGoogle Scholar
  31. Gurmen, S., Ebin, B., Stopić, S., Friedrich, B.: Nanocrystalline spherical iron–nickel (Fe–Ni) alloy particles prepared by ultrasonic spray pyrolysis and hydrogen reduction (USP-HR). J. Alloys Compd. 480(2), 529–533 (2009). doi:10.1016/j.jallcom.2009.01.094CrossRefGoogle Scholar
  32. Hamzaoui, R., Elkedim, O.: Magnetic properties of nanocrystalline Fe–10%Ni alloy obtained by planetary ball mills. J. Alloys Compd. 573, 157–162 (2013)CrossRefGoogle Scholar
  33. Hamzaoui, R., Elkedim, O., Fenineche, N., Gaffet, E., Craven, J.: Structure and magnetic properties of nanocrystalline mechanically alloyed Fe–10% Ni and Fe–20% Ni. Mater. Sci. Eng. A 360(1–2), 299–305 (2003)CrossRefGoogle Scholar
  34. Hausch, G.: Magnetovolume effects in invar alloys: spontaneous and forced volume magnetostriction. Phys. Status Solidi (A) 18(2), 735–740 (1973). doi:10.1002/pssa.2210180236CrossRefADSGoogle Scholar
  35. Howald, R.A.: The thermodynamics of tetrataenite and awaruite: a review of the Fe-Ni phase diagram. Metall. Mater. Trans. A 34(9), 1759–1769 (2003). doi:10.1007/s11661-003-0142-9CrossRefGoogle Scholar
  36. Huber, D.L.: Synthesis, properties, and applications of iron nanoparticles. Small 1(5), 482–501 (2005). doi:10.1002/smll.200500006MathSciNetCrossRefGoogle Scholar
  37. Inokuti, Y., Cantor, B.: Overview 15 the microstructure and kinetics of martensite transformations in splat-quenched Fe and FeNi alloys—II. FeNi alloys. Acta Metall. 30(2), 343–356 (1982). doi:10.1016/0001-6160(82)90214-0CrossRefGoogle Scholar
  38. Kaito, C., Saito, Y., Fujita, K.: Ordered structure in alloy grains of iron–nickel produced by the gas evaporation technique. Jpn. J. Appl. Phys. 28, L694–L696 (1989). doi:10.1143/JJAP.28.L694ADSCrossRefGoogle Scholar
  39. Kieling, V.C.: Parameters influencing the electrodeposition of Ni-Fe alloys. Surf. Coat. Technol. 96(2–3), 135–139 (1997). doi:10.1016/S0257-8972(97)00078-9CrossRefGoogle Scholar
  40. Koch, C.C.: Synthesis of nanostructured materials by mechanical milling: problems and opportunities. Nanostruct. Mater. 9(1–8), 13–22 (1997)CrossRefGoogle Scholar
  41. Kodama, D., Shinoda, K., Kasuya, R., Tohji, K,. Doi, M., Balachandran, J.: Synthesis of submicron sized Fe20Ni80 particles and their magnetic properties. J. Appl. Phys. 107(9), 09A320 (2010). doi:10.1063/1.3334170CrossRefGoogle Scholar
  42. Kouvel, J.S., Wilson, R.H.: Magnetization of iron–nickel alloys under hydrostatic pressure. J. Appl. Phys. 32(3), 435 (1961). doi:10.1063/1.1736020ADSCrossRefGoogle Scholar
  43. Kuhrt, C., Schultz, L.: Formation and magnetic properties of nanocrystalline mechanically alloyed Fe-Co and Fe–Ni. J. Appl. Phys. 73(10), 6588 (1993). doi:10.1063/1.352573ADSCrossRefGoogle Scholar
  44. Lappe, S.C.L.L., Church, N.S., Kasama, T., da Silva Fanta, A.B., Bromiley, G., Dunin-Borkowski, R.E., Feinberg, J.M., Russell, S., Harrison, R.J.:Mineral magnetism of dusty olivine: A credible recorder of pre-accretionary remanence. Geochem. Geophys. Geosyst. 12(12), 1525–2027 (2011). Scholar
  45. Leger, J.M., Loriers-Susse, C., Vodar, B.: Pressure effect on the curie temperatures of transition metals and alloys. Phys. Rev. B 6(11), 4250–4261 (1972). doi:10.1103/physrevb.6.4250ADSCrossRefGoogle Scholar
  46. Lewis, L.H., Mubarok, A., Poirier, E., Bordeaux, N., Manchanda, P., Kashyap, A., Skomski, R., Goldstein, J., Pinkerton, F.E., Mishra, R.K, Kubic, R.C. Jr., Barmak, K.: Inspired by nature: investigating tetrataenite for permanent magnet applications. J. Phys.: Condens. Matter 26(6), 064213 (2014). doi:10.1088/0953-8984/26/6/064213CrossRefGoogle Scholar
  47. Li, H., Ebrahimi, F.: Synthesis and characterization of electrodeposited nanocrystalline nickel–iron alloys. Mater. Sci. Eng. A 347(1–2), 93–101 (2003). doi:10.1016/S0921-5093(02)00586-5CrossRefGoogle Scholar
  48. Li, X., Chiba, A., Takahashi, S.: Preparation and magnetic properties of ultrafine particles of Fe-Ni alloys. J. Magn. Magn. Mater. 170(3), 339–345 (1997). doi:10.1016/S0304-8853(97)00039-5ADSCrossRefGoogle Scholar
  49. Liao, Q., Tannenbaum, R., Wang, Z.L.: Synthesis of FeNi3 alloyed nanoparticles by hydrothermal reduction. J. Phys. Chem. B 110(29), 14262–14265 (2006). doi:10.1021/jp0625154, 00062CrossRefGoogle Scholar
  50. McNerny, K., Kim, Y., Laughlin, D., McHenry, M.: Chemical synthesis of monodisperse γ-Fe–Ni magnetic nanoparticles with tunable Curie temperatures for self-regulated hyperthermia. J. Appl. Phys., p. 09A312 (2010). doi:10.1063/1.3348738CrossRefGoogle Scholar
  51. Mohamed, M.A., El-Maghraby, A.H., El-Latif, M.M.A., Farag, H.A.: Optimum synthesis conditions of nanometric Fe50Ni50 alloy formed by chemical reduction in aqueous solution. Bull. Mater. Sci. 36(5), 845–852 (2013). doi:10.1007/s12034-013-0539-zCrossRefGoogle Scholar
  52. Moustafa, S.F., Daoush, W.M.: Synthesis of nano-sized Fe–Ni powder by chemical process for magnetic applications. J. Mater. Process. Technol. 181(1–3), 59–63 (2007). doi:10.1016/j.jmatprotec.2006.03.008CrossRefGoogle Scholar
  53. Moys, M.H.: Grinding to nano-sizes: effect of media size and slurry viscosity. Miner. Eng. 74(C), 64–67 (2015)CrossRefGoogle Scholar
  54. Muxworthy, A.R., Williams, W.: Critical single-domain grain sizes in elongated iron particles: implications for meteoritic and lunar magnetism. Geophys. J. Int. 202(1), 578–583 (2015)ADSCrossRefGoogle Scholar
  55. Nagata, T.: Meteorite magnetization and paleointensity. Adv. Space Res. 2(12), 55–63 (1983). doi:10.1016/0273-1177(82)90288-5ADSCrossRefGoogle Scholar
  56. Néel, M.L.: Théorie du trainage magnétique des ferromagnétiques au grains fin avec applications aux terres cuites. Ann. Géophys. 5(2), 99–136 (1949)Google Scholar
  57. Néel, M.L.: Some theoretical aspects of rock-magnetism. Adv. Phys. 4(14), 191–243 (1955)ADSCrossRefGoogle Scholar
  58. Néel, L., Pauleve, J., Pauthenet, R., Laugier, J., Dautreppe, D.: Magnetic properties of an iron–nickel single crystal ordered by neutron bombardment. J. Appl. Phys. 35(3), 873–876 (1964). doi:10.1063/1.1713516ADSCrossRefGoogle Scholar
  59. Patrick, L.: The change of ferromagnetic curie points with hydrostatic pressure. Phys. Rev. 93(3), 384–392 (1954). doi:10.1103/physrev.93.384ADSCrossRefGoogle Scholar
  60. Rietveld, H.M.: A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2(2), 65–71 (1969)CrossRefGoogle Scholar
  61. Santos, E.D., Gattacceca, J., Rochette, P., Fillion, G., Scorzelli, R.: Kinetics of tetrataenite disordering. J. Magn. Magn. Mater. 375, 234–241 (2015). doi:10.1016/j.jmmm.2014.09.051ADSCrossRefGoogle Scholar
  62. Scorzelli, R.B., Silva, E.G., Kaito, C., Saito, Y., McElfresh, M., Elmassalami, M.: Mössbauer spectroscopy, X-ray diffraction and magnetic measurements of iron–nickel ultrafine particles. Hyperfine Interact. 94(1), 2337–2342 (1994). doi:10.1007/BF02063785CrossRefGoogle Scholar
  63. Stoner, E.C., Wohlfarth, E.P.: A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 240(826), 599–642 (1948). doi:10.1098/rsta.1948.0007ADSCrossRefzbMATHGoogle Scholar
  64. Suryanarayana, C.: Mechanical alloying and milling. Progr. Mater. Sci. 46(1–2), 1–184 (2001)CrossRefGoogle Scholar
  65. Swartzendruber, L.J., Itkin, V.P., Alcock, C.B.: The Fe–Ni (iron–nickel) system. J. Phase Equilib. 12(3), 288–312 (1991)CrossRefGoogle Scholar
  66. Tateno, S., Hirose, K., Ohishi, Y., Tatsumi, Y.: the structure of iron in earth’s inner core. Science 330(6002), 359–361 (2010). doi:10.1126/science.1194662CrossRefADSGoogle Scholar
  67. Uehara, M., Nakamura, N.: Experimental constraints on magnetic stability of chondrules and the paleomagnetic significance of dusty olivines. Earth Planet. Sci. Lett. 250(1–2), 292–305 (2006)ADSCrossRefGoogle Scholar
  68. Uehara, M., Gattacceca, J., Leroux, H., Jacob, D., van der Beek, C.J.: Magnetic microstructures of metal grains in equilibrated ordinary chondrites and implications for paleomagnetism of meteorites. Earth Planet. Sci. Lett. 306(3–4), 241–252 (2011). doi:10.1016/j.epsl.2011.04.008ADSCrossRefGoogle Scholar
  69. Van de Moortèle, B., Reynard, B., Rochette, P., Jackson, M.J., Beck, P., Gillet, P., McMillan, P.F., McCammon, C.: Shock-induced metallic iron nanoparticles in olivine-rich Martian meteorites. Earth Planet. Sci. Lett. 262(1–2), 37–49 (2007)ADSGoogle Scholar
  70. Viau, G., Fiévet-Vincent, F., Fiévet, F.: Nucleation and growth of bimetallic CoNi and FeNi monodisperse particles prepared in polyols. Solid State Ionics 84(3), 259–270 (1996). doi:10.1016/0167-2738(96)00005-7CrossRefGoogle Scholar
  71. Vitta, S., Khuntia, A., Ravikumar, G., Bahadur, D.: Electrical and magnetic properties of nanocrystalline Fe100xNix alloys. J. Magn. Magn. Mater. 320(3–4), 182–189 (2008). doi:10.1016/j.jmmm.2007.05.021ADSCrossRefGoogle Scholar
  72. Wasilewski, P.: Magnetization of small iron–nickel spheres. Phys. Earth Planet Inter. 26(1–2), 149–161 (1981). doi:10.1016/0031-9201(81)90106-0ADSCrossRefGoogle Scholar
  73. Wasilewski, P.: Magnetic characterization of the new magnetic mineral tetrataenite and its contrast with isochemical taenite. Phys. Earth Planet. Inter. 52(1), 150–158 (1988)ADSCrossRefGoogle Scholar
  74. Wei, Q., Gilder, S.A., Maier, B.: Pressure dependence on the remanent magnetization of Fe–Ni alloys and Ni metal. Phys. Rev. B 90(14) (2014). doi:10.1103/physrevb.90.144425Google Scholar
  75. Weisberg, M.K., McCoy, T.J., Krot, A.N.: Systematics and evaluation of meteorite classification. In: Meteorites and the Early Solar System II. University of Arizona Press, Tucson, pp. 19–52 (2006)Google Scholar
  76. Weiss, B.P., Fong, L.E., Vali, H., Lima, E.A., Baudenbacher, F.J.: Paleointensity of the ancient martian magnetic field. Geophys. Res. Lett. 35(23) (2008) doi:10.1029/2008gl035585Google Scholar
  77. Weiss, B.P., Gattacceca, J., Stanley, S., Rochette, P., Christensen, U.R.: Paleomagnetic records of meteorites and early planetesimal differentiation. Space Sci. Rev. 152(1–4), 341–390 (2010). doi:10.1007/s11214-009-9580-zADSCrossRefGoogle Scholar
  78. Wood, J.A.: Chondrites: their metallic minerals, thermal histories, and parent planets. Icarus 6(1–3), 1–49 (1967)ADSCrossRefGoogle Scholar
  79. Wood, B.J., Walter, M.J., Wade, J.: Accretion of the Earth and segregation of its core. Nature 441(7095), 825–833 (2006)ADSCrossRefGoogle Scholar
  80. Wu, H., Qian, C., Cao, Y., Cao, P., Li, W., Zhang, X., Wei, X.: Synthesis and magnetic properties of size-controlled FeNi alloy nanoparticles attached on multiwalled carbon nanotubes. J. Phys. Chem. Solids 71(3), 290–295 (2010). doi:10.1016/j.jpcs.2009.12.079ADSCrossRefGoogle Scholar
  81. Xu, J., Mao, H., Hemley, R.J., Hines, E.: The moissanite anvil cell: a new tool for high-pressure research. J. Phys.: Condens. Matter 14(44), 11543 (2002)ADSGoogle Scholar
  82. Yang, C.W., Williams, D.B., Goldstein, J.I.: A new empirical cooling rate indicator for meteorites based on the size of the cloudy zone of the metallic phases. Meteorit. Planet. Sci. 32(3), 423–429 (1997). doi:10.1111/j.1945–5100.1997.tb01285.xGoogle Scholar
  83. Yang, J., Goldstein, J.I., Scott, E.R.D.: Iron meteorite evidence for early formation and catastrophic disruption of protoplanets. Nature 446(7138), 888–891 (2007). doi:10.1038/nature05735ADSCrossRefGoogle Scholar
  84. Yue, M., Wang, Y.P., Poudyal, N., Rong, C.B., Liu, J.P.: Preparation of Nd–Fe–B nanoparticles by surfactant-assisted ball milling technique. J. Appl. Phys. 105(7), 07A708 (2009)CrossRefGoogle Scholar
  85. Zhang, X., Zhang, H., Wu, T., Li, Z., Zhang, Z., Sun, H.: Comparative study in fabrication and magnetic properties of FeNi alloy nanowires and nanotubes. J. Magn. Magn. Mater. 331, 162–167 (2013). doi:10.1016/j.jmmm.2012.11.033ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesLMU MunichMunichGermany

Personalised recommendations