Applications of Soft Computing in Intelligent Transportation Systems

  • Antonio D. Masegosa
  • Enrique Onieva
  • Pedro Lopez-Garcia
  • Eneko Osaba
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 360)


Intelligent Transportation Systems emerged to meet the increasing demand for more efficient, reliable and safer transportation systems. These systems combine electronic, communication and information technologies with traffic engineering to respond to the former challenges. The benefits of Intelligent Transportation Systems have been extensively proved in many different facets of transport and Soft Computing has played a major role in achieving these successful results. This book chapter aims at gathering and discussing some of the most relevant and recent advances of the application of Soft Computing in four important areas of Intelligent Transportation Systems as autonomous driving, traffic state prediction, vehicle route planning and vehicular ad hoc networks.



This work has been supported by the research projects TEC2013-45585-C2-2-R and TIN2014-56042-JIN from the Spanish Ministry of Economy and Competitiveness, and TIMON project which received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 636220.


  1. 1.
    Road safety in the European union trends, statistics and main challenges. Technical report, European Commission: General Mobility and Transport, Unit C.4 Road Safety (2015)Google Scholar
  2. 2.
    Alheeti, K.M.A., Gruebler, A., McDonald-Maier, K.D.: An intrusion detection system against malicious attacks on the communication network of driverless cars. In: 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), pp. 916–921 (2015)Google Scholar
  3. 3.
    Alinaghian, M., Naderipour, M.: A novel comprehensive macroscopic model for time-dependent vehicle routing problem with multi-alternative graph to reduce fuel consumption: a case study. Comput. Ind. Eng. 99, 210–222 (2016)CrossRefGoogle Scholar
  4. 4.
    Allström, A., Ekström, J., Gundlegård, D., Ringdahl, R., Rydergren, C., Bayen, A., Patire, A.: Hybrid approach for short-term traffic state and travel time prediction on highways. Trans. Res. Rec. 2554, 60–68 (2016)Google Scholar
  5. 5.
    Ario, T., Sugimachi, T., Fukao, T., Kawashima, H.: Evaluation of fuzzy inference-based self-tuning of steering control gains for heavy-duty trucks. Int. J. Intell. Trans. Syst. Res. 14(2), 92–100 (2016)Google Scholar
  6. 6.
    Baños, R., Ortega, J., Gil, C., Fernández, A., de Toro, F.: A simulated annealing-based parallel multi-objective approach to vehicle routing problems with time windows. Expert Syst. Appl. 40(5), 1696–1707 (2013)CrossRefGoogle Scholar
  7. 7.
    Barman, B., Kanjilal, R., Mukhopadhyay, A.: Neuro-fuzzy controller design to navigate unmanned vehicle with construction of traffic rules to avoid obstacles. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 24(3), 433–449 (2016)CrossRefGoogle Scholar
  8. 8.
    Belk, R.: You are what you can access: sharing and collaborative consumption online. J. Bus. Res. 67(8), 1595–1600 (2014)CrossRefGoogle Scholar
  9. 9.
    Bentez, A., Casillas, J.: Multi-objective genetic learning of serial hierarchical fuzzy systems for large-scale problems. Soft Comput. 17(1), 165–194 (2013)CrossRefGoogle Scholar
  10. 10.
    Bitam, S., Mellouk, A., Zeadally, S.: HyBR: A hybrid bio-inspired bee swarm routing protocol for safety applications in vehicular ad hoc networks (VANETs). J. Syst. Archit. 59(10), 953–967 (2013)CrossRefGoogle Scholar
  11. 11.
    Bonnefon, J.F., Shariff, A., Rahwan, I.: Autonomous vehicles need experimental ethics: are we ready for utilitarian cars? arXiv preprint. arXiv:1510.03346 (2015)
  12. 12.
    Brito, J., Martínez, F.J., Moreno, J.A., Verdegay, J.L.: An ACO hybrid metaheuristic for close-open vehicle routing problems with time windows and fuzzy constraints. Appl. Soft Comput. 32, 154–163 (2015)CrossRefGoogle Scholar
  13. 13.
    Brynjolfsson, E., McAfee, A.: Race Against the Machine. Digital Frontier, Lexington, MA (2011)Google Scholar
  14. 14.
    Carrabs, F., Cordeau, J.F., Laporte, G.: Variable neighborhood search for the pickup and delivery traveling salesman problem with lifo loading. Inf. J. Comput. 19(4), 618–632 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for direct perception in autonomous driving. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2722–2730 (2015)Google Scholar
  16. 16.
    Chiang, W.C., Russell, R.A.: Simulated annealing metaheuristics for the vehicle routing problem with time windows. Ann. Oper. Res. 63(1), 3–27 (1996)CrossRefzbMATHGoogle Scholar
  17. 17.
    Chouraqui, S., Selma, B.: Unmanned vehicle trajectory tracking by neural networks. Int. Arab J. Inf. Technol. 13(3), 272–275 (2016)Google Scholar
  18. 18.
    Dimitrakopoulos, G., Demestichas, P.: Intelligent transportation systems. IEEE Veh. Technol. Mag. 5(1), 77–84 (2010)CrossRefGoogle Scholar
  19. 19.
    Du, X., Htet, K., Tan, K.: Development of a genetic-algorithm-based nonlinear model predictive control scheme on velocity and steering of autonomous vehicles. IEEE Trans. Ind. Electron. 63(11), 6970–6977 (2016)CrossRefGoogle Scholar
  20. 20.
    ERTRAC: Multi-annual implementation plan for Horizon 2020. Tech. rep. (2013).
  21. 21.
    Escobar, J.W., Linfati, R., Toth, P., Baldoquin, M.G.: A hybrid granular tabu search algorithm for the multi-depot vehicle routing problem. J. Heuristics 20(5), 483–509 (2014)CrossRefGoogle Scholar
  22. 22.
    Faddel, S., Mohamed, A., Mohammed, O.: Fuzzy logic-based autonomous controller for electric vehicles charging under different conditions in residential distribution systems. Electr. Power Syst. Res. 148, 48–58 (2017)CrossRefGoogle Scholar
  23. 23.
    Figueiredo, L., Jesus, I., Machado, J., Ferreira, J., Martins de Carvalho, J.: Towards the development of intelligent transportation systems. In: Proceedings of the 2001 IEEE Intelligent Transportation Systems, pp. 1206–1211 (2001)Google Scholar
  24. 24.
    Fusco, G., Colombaroni, C., Isaenko, N.: Comparative analysis of implicit models for real-time short-term traffic predictions. IET Intell. Trans. Syst. 10(4), 270–278 (2016)CrossRefGoogle Scholar
  25. 25.
    Galaviz-Mosqueda, A., Villarreal-Reyes, S., Galeana-Zapien, H., Rubio-Loyola, J., Rivera-Rodriguez, R.: Genetic tuning of fuzzy rule-based systems for multi-hop broadcast protocols for VANETs. Telecommun. Syst. 63(3), 399–420 (2016)CrossRefGoogle Scholar
  26. 26.
    García-Nieto, J., Toutouh, J., Alba, E.: Automatic tuning of communication protocols for vehicular ad hoc networks using metaheuristics. Eng. Appl. Artif. Intell. 23(5), 795–805 (2010)CrossRefGoogle Scholar
  27. 27.
    Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)CrossRefGoogle Scholar
  28. 28.
    Ghannadpour, S.F., Noori, S., Tavakkoli-Moghaddam, R.: Multiobjective dynamic vehicle routing problem with fuzzy travel times and customers satisfaction in supply chain management. IEEE Trans. Eng. Manag. 60(4), 777–790 (2013)CrossRefGoogle Scholar
  29. 29.
    Ghannadpour, S.F., Noori, S., Tavakkoli-Moghaddam, R., Ghoseiri, K.: A multi-objective dynamic vehicle routing problem with fuzzy time windows: model, solution and application. Appl. Soft Comput. 14, 504–527 (2014)CrossRefGoogle Scholar
  30. 30.
    Hafeez, K.A., Zhao, L., Liao, Z., Ma, B.N.W.: A fuzzy-logic-based cluster head selection algorithm in VANETs. In: 2012 IEEE International Conference on Communications (ICC), pp. 203–207 (2012)Google Scholar
  31. 31.
    Hang, Su, Zhang, Xi: Clustering-based multichannel MAC protocols for QoS provisionings over vehicular ad hoc networks. IEEE Trans. Veh. Technol. 56(6), 3309–3323 (2007)CrossRefGoogle Scholar
  32. 32.
    Hartenstein, H., Laberteaux, K.P.: A tutorial survey on vehicular ad hoc networks. IEEE Commun. Mag. 46(6), 164–171 (2008)CrossRefGoogle Scholar
  33. 33.
    Hatcher, G., Burnier, C., Greer, E., Hardesty, D., Hicks, D., Jacobi, A., Lowrance, C., Mercer, M.: Intelligent transportation systems benefits, costs, and lessons learned: 2014 update report. In: Technical report, U.S. Department of Transportation, ITS Joint Program Office (2014).
  34. 34.
    Huang, W., Wu, Q., Ma, Y.L., Chu, X.M.: Design of speed controller of small intelligent vehicle based on visual navigation. J. Wuhan Univ. Technol. 32(6), 103–106 (2010)Google Scholar
  35. 35.
    Jati, G.K., Suyanto: Evolutionary discrete firefly algorithm for travelling salesman problem. In: Proceedings of the Adaptive and Intelligent Systems: Second International Conference, pp. 393–403 (2011)Google Scholar
  36. 36.
    Jia, B., Feng, W., Zhu, M.: Obstacle detection in single images with deep neural networks. Signal, Image Video Process. 10(6), 1033–1040 (2016)CrossRefGoogle Scholar
  37. 37.
    Kala, R., Warwick, K.: Reactive planning of autonomous vehicles for traffic scenarios. Electronics 4(4), 739–762 (2015)CrossRefGoogle Scholar
  38. 38.
    Kang, M.J., Kang, J.W., Wang, X., Larochelle, H., Vincent, P., Bengio, S.: Intrusion detection system using deep neural network for in-vehicle network security. PLOS ONE 11(6), e0155, 781 (2016)Google Scholar
  39. 39.
    Karakatič, S., Podgorelec, V.: A survey of genetic algorithms for solving multi depot vehicle routing problem. Appl. Soft Comput. 27, 519–532 (2015)CrossRefGoogle Scholar
  40. 40.
    Killat, M., Hartenstein, H.: Vehicular ad hoc networks: how to show the impact on traffic safety? In: 2007 IEEE 65th Vehicular Technology Conference—VTC2007, Spring, pp. 659–663 (2007)Google Scholar
  41. 41.
    Koesdwiady, A., Soua, R., Karray, F.: Improving traffic flow prediction with weather information in connected cars: a deep learning approach. IEEE Trans. Veh. Technol. 65(12), 9508–9517 (2016)CrossRefGoogle Scholar
  42. 42.
    Kumar, K., Parida, M., Katiyar, V.: Short term traffic flow prediction in heterogeneous condition using artificial neural network. Transport 30(4), 397–405 (2015)CrossRefGoogle Scholar
  43. 43.
    Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Laporte, G.: The vehicle routing problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(3), 345–358 (1992)CrossRefzbMATHGoogle Scholar
  45. 45.
    Lopez-Garcia, P., Onieva, E., Osaba, E., Masegosa, A.D., Perallos, A.: A hybrid method for short-term traffic congestion forecasting using genetic algorithms and cross entropy. IEEE Trans. Intell. Trans. Syst. 17(2), 557–569 (2016)Google Scholar
  46. 46.
    Lopez-Garcia, P., Osaba, E., Onieva, E., Masegosa, A.D., Perallos, A.: Short-term traffic congestion forecasting using hybrid metaheuristics and rule-based methods: a comparative study. In: Luaces, O., Gámez, J.A., Barrenechea, E., Troncoso, A., Galar, M., Quintián, H., Corchado, E. (eds.) Advances in Artificial Intelligence: 17th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2016, pp. 290–299. Springer International Publishing (2016)Google Scholar
  47. 47.
    Malek, M., Guruswamy, M., Pandya, M., Owens, H.: Serial and parallel simulated annealing and tabu search algorithms for the traveling salesman problem. Ann. Oper. Res. 21(1), 59–84 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Masegosa, A.D., de la Iglesia, I., Hernandez-Jayo, U., Diez, L.E., Bahillo, A., Onieva, E.: Solutions based on soft computing for the sustainability and climate change. In: A New Approach for Information Dissemination in VANETs Based on Covering Location and Metaheuristics, pp. 1–24. Springer International Publishing (2017). In pressGoogle Scholar
  49. 49.
    OECD: Improving Reliability on Surface Transport Networks. OECD Publishing (2010). URL
  50. 50.
    Oh, S.D., Kim, Y.J., Hong, J.S.: Urban traffic flow prediction system using a multifactor pattern recognition model. IEEE Trans. Intell. Trans. Syst. 16(5), 2744–2755 (2015)CrossRefGoogle Scholar
  51. 51.
    Onieva, E., Godoy, J., Villagrá, J., Milanés, V., Pérez, J.: On-line learning of a fuzzy controller for a precise vehicle cruise control system. Expert Syst. Appl. 40(4), 1046–1053 (2013)CrossRefGoogle Scholar
  52. 52.
    Onieva, E., Hernandez-Jayo, U., Osaba, E., Perallos, A., Zhang, X.: A multi-objective evolutionary algorithm for the tuning of fuzzy rule bases for uncoordinated intersections in autonomous driving. Inf. Sci. 321, 14–30 (2015)CrossRefGoogle Scholar
  53. 53.
    Onieva, E., Lopez-Garcia, P., Masegosa, A.D., Osaba, E., Perallos, A.: A comparative study on the performance of evolutionary fuzzy and crisp rule based classification methods in congestion prediction. Trans. Res. Proced. 14, 4458–4467 (2016)Google Scholar
  54. 54.
    Osaba, E., Carballedo, R., Yang, X.S., Diaz, F.: An Evolutionary Discrete Firefly Algorithm with Novel Operators for Solving the Vehicle Routing Problem with Time Windows, pp. 21–41. Springer International Publishing, Cham (2016)Google Scholar
  55. 55.
    Osaba, E., Yang, X.S., Diaz, F., Lopez-Garcia, P., Carballedo, R.: An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems. Eng. Appl. Artif. Intell. 48, 59–71 (2016)CrossRefGoogle Scholar
  56. 56.
    Osaba, E., Yang, X.S., Diaz, F., Onieva, E., Masegosa, A.D., Perallos, A.: A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy. Soft Comput. 1–14 (2016)Google Scholar
  57. 57.
    Papadimitratos, P., La Fortelle, A., Evenssen, K., Brignolo, R., Cosenza, S.: Vehicular communication systems: enabling technologies, applications, and future outlook on intelligent transportation. IEEE Commun. Mag. 47(11), 84–95 (2009)CrossRefGoogle Scholar
  58. 58.
    Pérez, J., Gajate, A., Milanés, V., Onieva, E., Santos, M.: Design and implementation of a neuro-fuzzy system for longitudinal control of autonomous vehicles. In: International Conference on Fuzzy Systems, pp. 1–6 (2010)Google Scholar
  59. 59.
    Pérez, J., Milanés, V., Godoy, J., Villagrá, J., Onieva, E.: Cooperative controllers for highways based on human experience. Expert Syst. Appl. 40(4), 1024–1033 (2013)CrossRefGoogle Scholar
  60. 60.
    Pisinger, D., Ropke, S.: Large neighborhood search In: Handbook of Metaheuristics, pp. 399–419 (2010)Google Scholar
  61. 61.
    Precup, R.E., David, R.C., Petriu, E.M., Preitl, S., Rădac, M.B.: Fuzzy logic-based adaptive gravitational search algorithm for optimal tuning of fuzzy-controlled servo systems. IET Control Theory Appl. 7(1), 99–107 (2013)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Precup, R.E., David, R.C., Petriu, E.M., Radac, M.B., Preitl, S.: Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness. IEEE Trans. Cybern. 44(11), 1997–2009 (2014)CrossRefGoogle Scholar
  63. 63.
    Reed, M., Yiannakou, A., Evering, R.: An ant colony algorithm for the multi-compartment vehicle routing problem. Appl. Soft Comput. 15, 169–176 (2014)CrossRefGoogle Scholar
  64. 64.
    Rodriguez-Castao, A., Heredia, G., Ollero, A.: High-speed autonomous navigation system for heavy vehicles. Appl. Soft Comput. J. 43, 572–582 (2016)CrossRefGoogle Scholar
  65. 65.
    Sarasola, B., Doerner, K.F., Schmid, V., Alba, E.: Variable neighborhood search for the stochastic and dynamic vehicle routing problem. Ann. Oper. Res. 236(2), 425–461 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRefGoogle Scholar
  67. 67.
    Shea, C., Hassanabadi, B., Valaee, S.: Mobility-based clustering in VANETs using affinity propagation. In: GLOBECOM 2009—2009 IEEE Global Telecommunications Conference, pp. 1–6 (2009)Google Scholar
  68. 68.
    Soua, R., Koesdwiady, A., Karray, F.: Big-data-generated traffic flow prediction using deep learning and dempster-shafer theory. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 3195–3202 (2016)Google Scholar
  69. 69.
    Souza, A.B., Celestino, J., Xavier, F.A., Oliveira, F.D., Patel, A., Latifi, M.: Stable multicast trees based on ant colony optimization for vehicular ad hoc networks. In: The International Conference on Information Networking 2013 (ICOIN), pp. 101–106 (2013)Google Scholar
  70. 70.
    Taha, A., Hachimi, M., Moudden, A.: Adapted bat algorithm for capacitated vehicle routing problem. Int. Rev. Comput. Softw. 10(6), 610–619 (2015)Google Scholar
  71. 71.
    Tang, J., Pan, Z., Fung, R.Y., Lau, H.: Vehicle routing problem with fuzzy time windows. Fuzzy Sets and Syst. 160(5), 683–695 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Torres, I., Cruz, C., Verdegay, J.L.: Solving the truck and trailer routing problem with fuzzy constraints. Int. J. Comput. Intell. Syst. 8(4), 713–724 (2015)CrossRefGoogle Scholar
  73. 73.
    Toutouh, J., Garcia-Nieto, J., Alba, E.: Intelligent OLSR routing protocol optimization for VANETs. IEEE Trans. Veh. Technol. 61(4), 1884–1894 (2012)CrossRefGoogle Scholar
  74. 74.
    Van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated annealing. In: Simulated Annealing: Theory and Applications, pp. 7–15 (1987)Google Scholar
  75. 75.
    Verdegay, J.L., Yager, R.R., Bonissone, P.P.: On heuristics as a fundamental constituent of soft computing. Fuzzy Sets and Syst. 159(7), 846–855 (2008)MathSciNetCrossRefGoogle Scholar
  76. 76.
    Verma, M., Manoj, M., Verma, A.: Analysis of aspiration for owning a car among youths in a city of a developing country, India. Trans. Dev. Econ. 3(1), 7 (2017)CrossRefGoogle Scholar
  77. 77.
    Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows. Comput. Oper. Res. 40(1), 475–489 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    Wu, C., Ohzahata, S., Kato, T.: VANET broadcast protocol based on fuzzy logic and lightweight retransmission mechanism. IEICE Trans. Commun. E95-B(2), 415–425 (2012)Google Scholar
  79. 79.
    Xidias, E., Zacharia, P., Nearchou, A.: Path planning and scheduling for a fleet of autonomous vehicles. Robotica 34(10), 2257–2273 (2016)CrossRefGoogle Scholar
  80. 80.
    Xu, D.W., Wang, Y.D., Jia, L.M., Qin, Y., Dong, H.H.: Real-time road traffic state prediction based on arima and kalman filter. Front. Inf. Technol. Electron. Eng. 18(2), 287–302 (2017)CrossRefGoogle Scholar
  81. 81.
    Xu, Y., Kong, Q.J., Klette, R., Liu, Y.: Accurate and interpretable bayesian mars for traffic flow prediction. IEEE Trans. Intell. Trans. Syst. 15(6), 2457–2469 (2014)CrossRefGoogle Scholar
  82. 82.
    Yan, S., Chen, C.Y., Chang, S.C.: A car pooling model and solution method with stochastic vehicle travel times. IEEE Trans. Intell. Trans. Syst. 15(1), 47–61 (2014)CrossRefGoogle Scholar
  83. 83.
    Yang, J.Y., Chou, L.D., Tung, C.F., Huang, S.M., Wang, T.W.: Average-speed forecast and adjustment via VANETs. IEEE Trans. Veh. Technol. 62(9), 4318–4327 (2013)CrossRefGoogle Scholar
  84. 84.
    Yang, X.S.: Nature-inspired metaheuristic algorithms. Luniver press (2008)Google Scholar
  85. 85.
    Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74 (2010)Google Scholar
  86. 86.
    Yang, X.S., He, X.: Bat algorithm: literature review and applications. Int. J. Bio-Inspir. Comput. 5(3), 141–149 (2013)CrossRefGoogle Scholar
  87. 87.
    Yang, X.S., He, X.: Firefly algorithm: recent advances and applications. Int. J. Swarm Intell. 1(1), 36–50 (2013)CrossRefGoogle Scholar
  88. 88.
    Yang, Y., Luo, H., Xu, H., Wu, F.: Towards real-time traffic sign detection and classification. IEEE Trans. Intell. Trans. Syst. 17(7), 2022–2031 (2016)CrossRefGoogle Scholar
  89. 89.
    Yao, B., Yu, B., Hu, P., Gao, J., Zhang, M.: An improved particle swarm optimization for carton heterogeneous vehicle routing problem with a collection depot. Ann. Oper. Res. 242(2), 303–320 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  90. 90.
    Yu, X., Xiong, S., He, Y., Wong, W., Zhao, Y.: Research on campus traffic congestion detection using BP neural network and Markov model. J. Inf. Secur. Appl. 31, 54–60 (2016)Google Scholar
  91. 91.
    Zhang, D., Li, S., Yang, Q., Liu, L.: Optimization based trajectory planning of parallel parking with multiple constraints. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 8(2), 413–418 (2015)CrossRefGoogle Scholar
  92. 92.
    Zhang, J., Wang, F.Y., Wang, K., Lin, W.H., Xu, X., Chen, C.: Data-driven intelligent transportation systems: a survey. IEEE Trans. Intell. Trans. Syst. 12(4), 1624–1639 (2011)CrossRefGoogle Scholar
  93. 93.
    Zhang, X., Onieva, E., Lee, V., Liu, K.: Congestion prediction by means of fuzzy logic and genetic algorithms. In: Intelligent Transport Systems: Technologies and Applications, pp. 189–205 (2015)Google Scholar
  94. 94.
    Zhang, X., Onieva, E., Perallos, A., Osaba, E., Lee, V.: Hierarchical fuzzy rule-based system optimized with genetic algorithms for short term traffic congestion prediction. Trans. Res. Part C: Emerg. Technol. 43, 127–142 (2014)CrossRefGoogle Scholar
  95. 95.
    Zhou, Y., Luo, Q., Xie, J., Zheng, H.: A hybrid bat algorithm with path relinking for the capacitated vehicle routing problem. In: Yang, X.S., Bekdaş, G., Nigdeli, S.M. (eds.) Metaheuristics and Optimization in Civil Engineering, pp. 255–276. Springer International Publishing, Cham (2016)CrossRefGoogle Scholar
  96. 96.
    Zrar Ghafoor, K., AbuBakar, K., van Eenennaam, M., Khokhar, R.H., Gonzalez, A.J.: A fuzzy logic approach to beaconing for vehicular ad hoc networks. Telecommun. Syst. 52(1), 139–149 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Antonio D. Masegosa
    • 1
    • 2
    • 3
  • Enrique Onieva
    • 1
    • 2
  • Pedro Lopez-Garcia
    • 1
    • 2
  • Eneko Osaba
    • 1
    • 2
  1. 1.Faculty of EngineeringUniversity of DeustoBilbaoSpain
  2. 2.DeustoTech-Fundacion DeustoDeusto FoundationBilbaoSpain
  3. 3.IKERBASQUEBasque Foundation for ScienceBilbaoSpain

Personalised recommendations