Behavioral and Neurocognitive Evaluation of a Web-Platform for Game-Based Learning of Orthography and Numeracy

  • Mojtaba Soltanlou
  • Stefanie Jung
  • Stephanie Roesch
  • Manuel Ninaus
  • Katharina Brandelik
  • Jürgen Heller
  • Torsten Grust
  • Hans-Christoph Nuerk
  • Korbinian Moeller


Recent years have seen a considerable increase in informal educational environments complementing formal educational settings such as schools. In this chapter, we will report results on the efficacy of a web-platform for game-based learning of orthography and numeracy. Besides the behavioral assessment of the platform, we focused specifically on neurocognitive changes due to training on the platform. These neurocognitive data are particularly informative to understand how game-based learning leads to performance improvements, and also might help us to develop new instructional designs. Our web-based platform hosts several learning games, aiming at fostering orthography and numeracy skills. Learning games enable individual learning independent from formal learning environments—anytime and anywhere. Behavioral results revealed promising learning effects, particularly for orthography. In the next step, neurocognitive changes during arithmetic learning were assessed. Results indicated that arithmetic learning in our informal environment led to strategy changes, previously reported for the development of arithmetic competencies in formal learning settings for both adults and children. Altogether, the findings suggest that improvements in orthography and numeracy can be achieved in joyful and less stressful informational environments such as our web-platform for game-based learning. We suggest that the additional implementation of adaptivity in such learning games to better meet individual needs should further increase obtained training effects in the future. Instructional implications of these findings and the relevance of neurocognitive data for learning are discussed.


Digital learning games Orthography Numeracy Arithmetic Neurocognitive evaluation 


  1. Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in expert mathematicians. Proceedings of the National Academy of Sciences, 113(18), 4909–4917.CrossRefGoogle Scholar
  2. Ansari, D. (2008). Effects of development and enculturation on number representation in the brain. Nature Reviews Neuroscience, 9(4), 278–291.PubMedCrossRefGoogle Scholar
  3. Antonenko, P., Paas, F., Grabner, R., & van Gog, T. (2010). Using electroencephalography to measure cognitive load. Educational Psychology Review, 22(4), 425–438.CrossRefGoogle Scholar
  4. Arsalidou, M., & Taylor, M. J. (2011). Is 2+ 2= 4? Meta-analyses of brain areas needed for numbers and calculations. NeuroImage, 54(3), 2382–2393.PubMedCrossRefGoogle Scholar
  5. Bahnmueller, J., Dresler, T., Ehlis, A.-C., Cress, U., & Nuerk, H.-C. (2014). NIRS in motion—Unraveling the neurocognitive underpinnings of embodied numerical cognition. Frontiers in Psychology, 5, 743.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baroody, A. J. (1983). The development of procedural knowledge: An alternative explanation for chronometric trends of mental arithmetic. Developmental Review, 3(2), 225–230.CrossRefGoogle Scholar
  7. Barrouillet, P., & Thevenot, C. (2013). On the problem-size effect in small additions: Can we really discard any counting-based account? Cognition, 128(1), 35–44.PubMedCrossRefGoogle Scholar
  8. Beddington, J., Cooper, C. L., Field, J., Goswami, U., Huppert, F. A., Jenkins, R., … Thomas, S. M. (2008). The mental wealth of nations. Nature, 455(7216), 1057–1060.PubMedCrossRefGoogle Scholar
  9. Bloechle, J., Huber, S., Bahnmueller, J., Rennig, J., Willmes, K., Cavdaroglu, S., … Klein, E. (2016). Fact learning in complex arithmetic—The role of the angular gyrus revisited. Human Brain Mapping, 37(9), 3061–3079.PubMedCrossRefGoogle Scholar
  10. Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42(1), 189.PubMedCrossRefGoogle Scholar
  11. Bowers, J. S. (2016a). The practical and principled problems with educational neuroscience. Psychological Review, 123(5), 600–612.PubMedCrossRefGoogle Scholar
  12. Bowers, J. S. (2016b). Psychology, not educational neuroscience, is the way forward for improving educational outcomes for all children: Reply to Gabrieli (2016) and Howard-Jones et al. (2016). Psychological Review, 123(5), 628–635.PubMedCrossRefGoogle Scholar
  13. Boyle, E. A., Hainey, T., Connolly, T. M., Gray, G., Earp, J., Ott, M., … Pereira, J. (2016). An update to the systematic literature review of empirical evidence of the impacts and outcomes of computer games and serious games. Computers & Education, 94, 178–192.CrossRefGoogle Scholar
  14. Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. Science, 332(6033), 1049–1053.PubMedCrossRefGoogle Scholar
  15. Cantlon, J. F., Libertus, M. E., Pinel, P., Dehaene, S., Brannon, E. M., & Pelphrey, K. A. (2009). The neural development of an abstract concept of number. Journal of Cognitive Neuroscience, 21(11), 2217–2229.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Carlisle, J. F., & Katz, L. A. (2006). Effects of word and morpheme familiarity on reading of derived words. Reading and Writing, 19(7), 669–693.CrossRefGoogle Scholar
  17. Chen, Z.-H., Liao, C. C., Cheng, H. N., Yeh, C. Y., & Chan, T.-W. (2012). Influence of game quests on pupils’ enjoyment and goal-pursuing in math learning. Educational Technology & Society, 15(2), 317–327.Google Scholar
  18. Daniel, S. S., Walsh, A. K., Goldston, D. B., Arnold, E. M., Reboussin, B. A., & Wood, F. B. (2006). Suicidality, school dropout, and reading problems among adolescents. Journal of Learning Disabilities, 39(6), 507–514.PubMedCrossRefGoogle Scholar
  19. Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychological inquiry, 11(4), 227–268.CrossRefGoogle Scholar
  20. Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33(2), 219–250.PubMedCrossRefGoogle Scholar
  21. Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14(2), 218–224.PubMedCrossRefGoogle Scholar
  22. Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3–6), 487–506.PubMedCrossRefGoogle Scholar
  23. Delazer, M., Domahs, F., Bartha, L., Brenneis, C., Lochy, A., Trieb, T., & Benke, T. (2003). Learning complex arithmetic—An fMRI study. Cognitive Brain Research, 18(1), 76–88.PubMedCrossRefGoogle Scholar
  24. Delazer, M., Ischebeck, A., Domahs, F., Zamarian, L., Koppelstaetter, F., Siedentopf, C., … Felber, S. (2005). Learning by strategies and learning by drill—Evidence from an fMRI study. NeuroImage, 25(3), 838–849.PubMedCrossRefGoogle Scholar
  25. Dolce, G., & Waldeier, H. (1974). Spectral and multivariate analysis of EEG changes during mental activity in man. Electroencephalography and Clinical Neurophysiology, 36, 577–584.PubMedCrossRefGoogle Scholar
  26. Domahs, F., Delazer, M., & Nuerk, H. C. (2006). What makes multiplication facts difficult: Problem size or neighborhood consistency? Experimental Psychology, 53(4), 275–282.PubMedCrossRefGoogle Scholar
  27. Dresler, T., Obersteiner, A., Schecklmann, M., Vogel, A. C. M., Ehlis, A.-C., Richter, M. M., … Fallgatter, A. J. (2009). Arithmetic tasks in different formats and their influence on behavior and brain oxygenation as assessed with near-infrared spectroscopy (NIRS): A study involving primary and secondary school children. Journal of Neural Transmission, 116(12), 1689–1700.PubMedCrossRefGoogle Scholar
  28. Ehlis, A.-C., Schneider, S., Dresler, T., & Fallgatter, A. J. (2014). Application of functional near-infrared spectroscopy in psychiatry. NeuroImage, 85, 478–488.PubMedCrossRefGoogle Scholar
  29. Elo, A. E. (1978). The rating of chessplayers, past and present. New York, NY: Arco Pub.Google Scholar
  30. Emerson, R. W., & Cantlon, J. F. (2015). Continuity and change in children’s longitudinal neural responses to numbers. Developmental Science, 18(2), 314–326.PubMedCrossRefGoogle Scholar
  31. Erhel, S., & Jamet, E. (2013). Digital game-based learning: Impact of instructions and feedback on motivation and learning effectiveness. Computers & Education, 67, 156–167.CrossRefGoogle Scholar
  32. Esser, G., Wyschkon, A., & Schmidt, M. H. (2002). Was wird aus Achtjährigen mit einer Lese-und Rechtschreibstörung. Zeitschrift für Klinische Psychologie und Psychotherapie; Forschung und Praxis, 31(4), 235–242.CrossRefGoogle Scholar
  33. Evans, T. M., Kochalka, J., Ngoon, T. J., Wu, S. S., Qin, S., Battista, C., & Menon, V. (2015). Brain structural integrity and intrinsic functional connectivity forecast 6 year longitudinal growth in children’s numerical abilities. The Journal of Neuroscience, 35(33), 11743–11750.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fischer, G. H. (1995). The linear logistic test model Rasch models (pp. 131–155). New York, NY: Springer.Google Scholar
  35. Fleischer, J., Leutner, D., & Klieme, E. (2012). Modellierung von Kompetenzen im Bereich der Bildung: eine psychologische Perspektive. Psychologische Rundschau, 63, 1–2.CrossRefGoogle Scholar
  36. Gabrieli, J. D. (2016). The promise of educational neuroscience: Comment on Bowers (2016). Psychological Review, 123(5), 613–619.PubMedCrossRefGoogle Scholar
  37. Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research and practice model. Simulation & Gaming, 33(4), 441–467.CrossRefGoogle Scholar
  38. Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7(4), 374–385.PubMedCrossRefGoogle Scholar
  39. Giorgidze, G., Grust, T., Schreiber, T., & Weijers, J. (2010). Haskell boards the Ferry.. Paper presented at the Symposium on Implementation and Application of Functional Languages.Google Scholar
  40. Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., Ebner, F., & Neuper, C. (2009). To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia, 47(2), 604–608.PubMedCrossRefGoogle Scholar
  41. Grabner, R. H., Ansari, D., Reishofer, G., Stern, E., Ebner, F., & Neuper, C. (2007). Individual differences in mathematical competence predict parietal brain activation during mental calculation. NeuroImage, 38(2), 346–356.PubMedCrossRefGoogle Scholar
  42. Grabner, R. H., & De Smedt, B. (2012). Oscillatory EEG correlates of arithmetic strategies: A training study. Frontiers in Psychology, 3.Google Scholar
  43. Grabner, R. H., Ischebeck, A., Reishofer, G., Koschutnig, K., Delazer, M., Ebner, F., & Neuper, C. (2009). Fact learning in complex arithmetic and figural-spatial tasks: The role of the angular gyrus and its relation to mathematical competence. Human Brain Mapping, 30(9), 2936–2952.PubMedCrossRefGoogle Scholar
  44. Gross, J. (2006). The long term costs of literacy difficulties. Montvale, NJ: KPMG Foundation.Google Scholar
  45. Gross, J., Hudson, C., & Price, D. (2009). The long term costs of numeracy difficulties. London: Every Child a Chance Trust and KPMG.Google Scholar
  46. Haeussinger, F. B., Dresler, T., Heinzel, S., Schecklmann, M., Fallgatter, A. J., & Ehlis, A.-C. (2014). Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: An easy-to-use filter method. NeuroImage, 95, 69–79.PubMedCrossRefGoogle Scholar
  47. Hanushek, E. A., & Woessmann, L. (2010). The high cost of low educational performance: The long-run economic impact of improving PISA outcomes. Paris: OECD.Google Scholar
  48. Hartig, J., & Frey, A. (2012). Konstruktvalidierung und Skalenbeschreibung in der Kompetenzdiagnostik durch die Vorhersage von Aufgabenschwierigkeiten. Psychologische Rundschau, 63, 43–49.CrossRefGoogle Scholar
  49. Harvey, B., Klein, B., Petridou, N., & Dumoulin, S. (2013). Topographic representation of numerosity in the human parietal cortex. Science, 341(6150), 1123–1126.PubMedCrossRefGoogle Scholar
  50. Hinault, T., & Lemaire, P. (2016). What does EEG tell us about arithmetic strategies? A review. International Journal of Psychophysiology, 106, 115–126.PubMedCrossRefGoogle Scholar
  51. Howard-Jones, P., Varma, S., Ansari, D., Butterworth, B., De Smedt, B., Goswami, U., … Thomas, M. (2016). The principles and practices of educational neuroscience: Commentary on Bowers (2016). Psychological Review, 123(5), 620–627.PubMedCrossRefGoogle Scholar
  52. Huber, S., Fischer, U., Moeller, K., & Nuerk, H.-C. (2013). On the interrelation of multiplication and division in secondary school children. Frontiers in Psychology, (4), 740.Google Scholar
  53. Huber, S., Moeller, K., & Nuerk, H.-C. (2012). Differentielle Entwicklung arithmetischer Fähigkeiten nach der Grundschule: Manche Schere öffnet und schließt sich wieder. Lernen und Lernstörungen, 1, 119–134.CrossRefGoogle Scholar
  54. Ischebeck, A., Zamarian, L., Egger, K., Schocke, M., & Delazer, M. (2007). Imaging early practice effects in arithmetic. NeuroImage, 36(3), 993–1003.PubMedCrossRefGoogle Scholar
  55. Ischebeck, A., Zamarian, L., Schocke, M., & Delazer, M. (2009). Flexible transfer of knowledge in mental arithmetic—An fMRI study. NeuroImage, 44(3), 1103–1112.PubMedCrossRefGoogle Scholar
  56. Ischebeck, A., Zamarian, L., Siedentopf, C., Koppelstätter, F., Benke, T., Felber, S., & Delazer, M. (2006). How specifically do we learn? Imaging the learning of multiplication and subtraction. NeuroImage, 30(4), 1365–1375.PubMedCrossRefGoogle Scholar
  57. Ise, E., & Schulte-Körne, G. (2010). Spelling deficits in dyslexia: Evaluation of an orthographic spelling training. Annals of Dyslexia, 60(1), 18–39.PubMedCrossRefGoogle Scholar
  58. ISFE. (2012). Videogames in Europe: Consumer study. European summary report. Brussels: ISFE.Google Scholar
  59. Jung, S., Roesch, S., Huber, S., Heller, J., Grust, T., Nuerk, H., & Moeller, K. (2015). An interactive web-based learning platform for arithmetic and orthography. Paper presented at the Advances in Computers and Technology for Education–Proceedings of the 11th International Conference on Educational Technologies.Google Scholar
  60. Kast, M., Baschera, G.-M., Gross, M., Jäncke, L., & Meyer, M. (2011). Computer-based learning of spelling skills in children with and without dyslexia. Annals of Dyslexia, 61(2), 177–200.PubMedCrossRefGoogle Scholar
  61. Kaufmann, L., Wood, G., Rubinsten, O., & Henik, A. (2011). Meta-analyses of developmental fMRI studies investigating typical and atypical trajectories of number processing and calculation. Developmental Neuropsychology, 36(6), 763–787.PubMedCrossRefGoogle Scholar
  62. Kawashima, R., Taira, M., Okita, K., Inoue, K., Tajima, N., Yoshida, H., … Fukuda, H. (2004). A functional MRI study of simple arithmetic—A comparison between children and adults. Cognitive Brain Research, 18(3), 227–233.PubMedCrossRefGoogle Scholar
  63. Klein, E., Suchan, J., Moeller, K., Karnath, H.-O., Knops, A., Wood, G., … Willmes, K. (2016). Considering structural connectivity in the triple code model of numerical cognition: Differential connectivity for magnitude processing and arithmetic facts. Brain Structure and Function, 221, 979–995.PubMedCrossRefGoogle Scholar
  64. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29(2), 169–195.PubMedCrossRefGoogle Scholar
  65. Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition–timing hypothesis. Brain Research Reviews, 53(1), 63–88.PubMedCrossRefGoogle Scholar
  66. Klimesch, W., Vogt, F., & Doppelmayr, M. (1999). Interindividual differences in alpha and theta power reflect memory performance. Intelligence, 27(4), 347–362.CrossRefGoogle Scholar
  67. Kucian, K., von Aster, M., Loenneker, T., Dietrich, T., & Martin, E. (2008). Development of neural networks for exact and approximate calculation: A FMRI study. Developmental Neuropsychology, 33(4), 447–473.PubMedCrossRefGoogle Scholar
  68. Landerl, K. (2006). Reading acquisition in different orthographies: Evidence from direct comparisons. In R. M. Joshi & P. Aaron (Eds.), Handbook of orthography and literacy (pp. 513–530). Mahwah, NJ: L. Erlbaum.Google Scholar
  69. Lemaire, P. (2016). Cognitive aging: The role of strategies. New York, NY: Psychology Press.Google Scholar
  70. Lemaire, P., Barrett, S. E., Fayol, M., & Abdi, H. (1994). Automatic activation of addition and multiplication facts in elementary school children. Journal of Experimental Child Psychology, 57(2), 224–258.CrossRefGoogle Scholar
  71. Link, T., Huber, S., Nuerk, H.-C., & Moeller, K. (2014). Unbounding the mental number line—New evidence on children’s spatial representation of numbers. 4: 1021Google Scholar
  72. Link, T., Moeller, K., Huber, S., Fischer, U., & Nuerk, H.-C. (2013). Walk the number line—An embodied training of numerical concepts. Trends in Neuroscience and Education, 2(2), 74–84.CrossRefGoogle Scholar
  73. Link, T., Nuerk, H.-C., & Moeller, K. (2014). On the relation between the mental number line and arithmetic competencies. The quarterly journal of experimental psychology, 67(8), 1597–1613.PubMedCrossRefGoogle Scholar
  74. Lumsden, J., Edwards, E. A., Lawrence, N. S., Coyle, D., & Munafò, M. R. (2016). Gamification of cognitive assessment and cognitive training: A systematic review of applications and efficacy. JMIR Serious Games, 4(2), e11.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mekler, E. D., Brühlmann, F., Tuch, A. N., & Opwis, K. (2017). Towards understanding the effects of individual gamification elements on intrinsic motivation and performance. Computers in Human Behavior, 71, 525–534.CrossRefGoogle Scholar
  76. Menon, V., Rivera, S. M., White, C. D., Glover, G. H., & Reiss, A. L. (2000). Dissociating prefrontal and parietal cortex activation during arithmetic processing. NeuroImage, 12(4), 357–365. doi: 10.1006/nimg.2000.0613 PubMedCrossRefGoogle Scholar
  77. Mizuhara, H., & Yamaguchi, Y. (2007). Human cortical circuits for central executive function emerge by theta phase synchronization. NeuroImage, 36(1), 232–244.PubMedCrossRefGoogle Scholar
  78. Moeller, K., Fischer, U., Nuerk, H.-C., & Cress, U. (2015). Computers in mathematics education–Training the mental number line. Computers in Human Behavior, 48, 597–607.CrossRefGoogle Scholar
  79. Moeller, K., Klein, E., & Nuerk, H. C. (2011a). (No) Small adults: Children’s processing of carry addition problems. Developmental Neuropsychology, 36(6), 702–720.PubMedCrossRefGoogle Scholar
  80. Moeller, K., Klein, E., & Nuerk, H. C. (2011b). Three processes underlying the carry effect in addition—Evidence from eye tracking. British Journal of Psychology, 102(3), 623–645.PubMedCrossRefGoogle Scholar
  81. Moeller, K., Wood, G., Doppelmayr, M., & Nuerk, H.-C. (2010). Oscillatory EEG correlates of an implicit activation of multiplication facts in the number bisection task. Brain Research, 1320, 85–94.PubMedCrossRefGoogle Scholar
  82. Ninaus, M., Kiili, K., McMullen, J., & Moeller, K. (2016). A game-based approach to examining students’ conceptual knowledge of fractions. In R. Bottino et al. (Eds.), Games and learning alliance (pp. 37–49). New York, NY: Springer.CrossRefGoogle Scholar
  83. Ninaus, M., Pereira, G., Stefitz, R., Prada, R., Paiva, A., Neuper, C., & Wood, G. (2015). Game elements improve performance in a working memory training task. International Journal of Serious Games, 2, 3–16.CrossRefGoogle Scholar
  84. Ninaus, M., Witte, M., Kober, S. E., Friedrich, E. V., Kurzmann, J., Hartsuiker, E., … Wood, G. (2013). Neurofeedback and serious games. Psychology, Pedagogy, and Assessment in Serious Games, 82.Google Scholar
  85. Nuerk, H.-C., Kaufmann, L., Zoppoth, S., & Willmes, K. (2004). On the development of the mental number line: More, less, or never holistic with increasing age? Developmental Psychology, 40(6), 1199.PubMedCrossRefGoogle Scholar
  86. Nuerk, H.-C., Moeller, K., Klein, E., Willmes, K., & Fischer, M. H. (2011). Extending the mental number line: A review of multi-digit number processing. Zeitschrift Fur Psychologie-Journal of Psychology, 219(1), 3–22. doi: 10.1027/2151-2604/a000041 CrossRefGoogle Scholar
  87. Nuerk, H.-C., Moeller, K., & Willmes, K. (2015). Multi-digits numerical understanding. In R. CohenKadosh & A. Dowker (Eds.), Oxford handbook of mathematical cognition (pp. 106–139). Oxford: Oxford University Press.Google Scholar
  88. Núñez-Peña, M. I., & Suárez-Pellicioni, M. (2012). Processing false solutions in additions: Differences between high-and lower-skilled arithmetic problem-solvers. Experimental Brain Research, 218(4), 655–663.PubMedCrossRefGoogle Scholar
  89. Obersteiner, A., Dresler, T., Reiss, K., Vogel, A. C. M., Pekrun, R., & Fallgatter, A. J. (2010). Bringing brain imaging to the school to assess arithmetic problem solving: Chances and limitations in combining educational and neuroscientific research. ZDM, 42(6), 541–554.CrossRefGoogle Scholar
  90. Parsons, S., & Bynner, J. (2005). Does numeracy matter more? London: National Research and Development Centre for Adult Literacy and Numeracy.Google Scholar
  91. Pauli, P., Lutzenberger, W., Rau, H., Birbaumer, N., Rickard, T. C., Yaroush, R. A., & Bourne, L. E. (1994). Brain potentials during mental arithmetic: Effects of extensive practice and problem difficulty. Cognitive Brain Research, 2(1), 21–29.PubMedCrossRefGoogle Scholar
  92. Pfurtscheller, G. (2001). Functional brain imaging based on ERD/ERS. Vision Research, 41(10), 1257–1260.PubMedCrossRefGoogle Scholar
  93. Pfurtscheller, G., & Aranibar, A. (1977). Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalography and Clinical Neurophysiology, 42(6), 817–826.PubMedCrossRefGoogle Scholar
  94. Pfurtscheller, G., & Da Silva, F. L. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology, 110(11), 1842–1857.PubMedCrossRefGoogle Scholar
  95. Poldrack, R. A. (2000). Imaging brain plasticity: Conceptual and methodological issues—A theoretical review. NeuroImage, 12(1), 1–13.PubMedCrossRefGoogle Scholar
  96. Prado, J., Mutreja, R., & Booth, J. R. (2014). Developmental dissociation in the neural responses to simple multiplication and subtraction problems. Developmental Science, 17(4), 537–552.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Prins, P. J., Dovis, S., Ponsioen, A., Ten Brink, E., & Van der Oord, S. (2011). Does computerized working memory training with game elements enhance motivation and training efficacy in children with ADHD? Cyberpsychology, Behavior, and Social Networking, 14(3), 115–122.CrossRefGoogle Scholar
  98. Przybylski, A. K., Rigby, C. S., & Ryan, R. M. (2010). A motivational model of video game engagement. Review of General Psychology, 14(2), 154.CrossRefGoogle Scholar
  99. Qin, S., Cho, S., Chen, T., Rosenberg-Lee, M., Geary, D. C., & Menon, V. (2014). Hippocampal-neocortical functional reorganization underlies children’s cognitive development. Nature Neuroscience, 17(9), 1263–1269.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Ray, W. J., & Cole, H. W. (1985). EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science, 228(4700), 750–752.PubMedCrossRefGoogle Scholar
  101. Rivera, S. M., Reiss, A., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithmetic: Evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15(11), 1779–1790.PubMedCrossRefGoogle Scholar
  102. Roesch, S., Jung, S., Huber, S., Artemenko, C., Bahnmueller, J., Heller, J., … Moeller, K. (2016). Training arithmetic and orthography on a web-based and socially-interactive learning platform. International Journal of Education and Information Technologies, 10, 204–217.Google Scholar
  103. Sammer, G., Blecker, C., Gebhardt, H., Bischoff, M., Stark, R., Morgen, K., & Vaitl, D. (2007). Relationship between regional hemodynamic activity and simultaneously recorded EEG-theta associated with mental arithmetic-induced workload. Human Brain Mapping, 28(8), 793–803.PubMedCrossRefGoogle Scholar
  104. Scholkmann, F., Kleiser, S., Metz, A. J., Zimmermann, R., Pavia, J. M., Wolf, U., & Wolf, M. (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage, 85, 6–27. doi: 10.1016/j.neuroimage.2013.05.004 PubMedCrossRefGoogle Scholar
  105. Soltanlou, M., Artemenko, C., Dresler, T., Haeussinger, F. B., Fallgatter, A. J., Ehlis, A.-C., & Nuerk, H.-C. (2017). Increased arithmetic complexity is associated with domain-general but not domain-specific magnitude processing in children: A simultaneous fNIRS-EEG study. Cognitive, Affective, & Behavioral Neuroscience, 1–13.Google Scholar
  106. Spüler, M., Krumpe, T., Walter, C., Scharinger, C., Rosenstiel, W., & Gerjets, P. (2017). Brain-computer interfaces for educational applications. In J. Buder & F. W. Hesse (Eds.), Informational environments: Effects of use, effective designs (pp. 177–201). New York, NY: Springer.Google Scholar
  107. Supekar, K., Swigart, A. G., Tenison, C., Jolles, D. D., Rosenberg-Lee, M., Fuchs, L., & Menon, V. (2013). Neural predictors of individual differences in response to math tutoring in primary-grade school children. Proceedings of the National Academy of Sciences, 110(20), 8230–8235.CrossRefGoogle Scholar
  108. Verner, M., Herrmann, M. J., Troche, S. J., Roebers, C. M., & Rammsayer, T. H. (2013). Cortical oxygen consumption in mental arithmetic as a function of task difficulty: A near-infrared spectroscopy approach. Frontiers in Human Neuroscience, 7, 217.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Wabnitz, H., Moeller, M., Liebert, A., Obrig, H., Steinbrink, J., & Macdonald, R. (2010). Time-resolved near-infrared spectroscopy and imaging of the adult human brain. In E. Takahashi & D. Bruley (Eds.), Oxygen transport to tissue XXXI (pp. 143–148). Boston, MA: Springer.CrossRefGoogle Scholar
  110. Whyte, J. C., & Bull, R. (2008). Number games, magnitude representation, and basic number skills in preschoolers. Developmental Psychology, 44(2), 588.PubMedCrossRefGoogle Scholar
  111. Wilson, A., Dehaene, S., Pinel, P., Revkin, S., Cohen, L., & Cohen, D. (2006). Principles underlying the design of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2, 19.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wilson, A., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Functions, 2(1), 1.CrossRefGoogle Scholar
  113. Zamarian, L., Ischebeck, A., & Delazer, M. (2009). Neuroscience of learning arithmetic—Evidence from brain imaging studies. Neuroscience & Biobehavioral Reviews, 33(6), 909–925.CrossRefGoogle Scholar
  114. Zhou, X., Booth, J. R., Lu, J., Zhao, H., Butterworth, B., Chen, C., & Dong, Q. (2011). Age-independent and age-dependent neural substrate for single-digit multiplication and addition arithmetic problems. Developmental Neuropsychology, 36(3), 338–352.PubMedPubMedCentralCrossRefGoogle Scholar
  115. Zurstiege, G., Zipfel, S., Ort, A., Mack, I., Meitz, T. G. K., & Schäffeler, N. (2017). Managing obesity prevention using digital media—A double-sided approach. In J. Buder & F. W. Hesse (Eds.), Informational environments: Effects of use, effective designs (pp. 97–123). New York, NY: Springer.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mojtaba Soltanlou
    • 1
    • 2
    • 3
  • Stefanie Jung
    • 1
    • 2
  • Stephanie Roesch
    • 2
  • Manuel Ninaus
    • 2
    • 4
  • Katharina Brandelik
    • 1
  • Jürgen Heller
    • 1
  • Torsten Grust
    • 5
  • Hans-Christoph Nuerk
    • 1
    • 2
    • 4
  • Korbinian Moeller
    • 1
    • 2
    • 4
  1. 1.Department of PsychologyUniversity of TübingenTübingenGermany
  2. 2.Leibniz-Institut für WissensmedienTübingenGermany
  3. 3.Graduate Training Centre of Neuroscience/IMPRS for Cognitive and Systems NeuroscienceTübingenGermany
  4. 4.LEAD Graduate School & Research NetworkUniversity of TübingenTübingenGermany
  5. 5.Department of Computer ScienceUniversity of TübingenTübingenGermany

Personalised recommendations