The Use of Convolutional Neural Networks in Biomedical Data Processing

  • Miroslav Bursa
  • Lenka Lhotska
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10443)


In this work, we study the use of convolutional neural networks for biomedical signal processing. Convolutional neural networks show promising results for classifying images when compared to traditional multilayer perceptron, as the latter do not take spatial structure of the data into an account.

Cardiotocography (CTG) is a monitoring of fetal heart rate (FHR) and uterine contractions (UC) used by obstetricians to assess fetal well-being. Because of the complexity of FHR dynamics, regulated by several neurological feedback loops, the visual inspection of FHR remains a difficult task. The application of most guidelines often result in significant inter-and intra-observer variability.

Convolutional neural network (CNN, or ConvNet) is inspired by the organization of the animal visual cortex.

In the paper we are applying continuous wavelet transform (CWT) to the UC and FHR signals with different levels of time/frequency detail parameter and in two different resolutions. The output 2D structures are fed to convolutional neural network (we are using Tensorflow framework [1]) and we are minimizing the cross entropy function.

On the testing dataset (with pH threshold at 7.15) we have achieved the accuracy of 94.1% which is a promising result that needs to be further studied.


Data mining Cardiotocography Intrapartum Signal processing Convolutional neural networks 



The research is supported by the project No. 15-31398A Features of Electromechanical Dyssynchrony that Predict Effect of Cardiac Resynchronization Therapy of the Agency for Health Care Research of the Czech Republic. This work has been developed in the BEAT research group with the support of University Hospital in Brno Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme Projects of Large Research, Development, and Innovations Infrastructures (CESNET LM2015042), is greatly appreciated.


  1. 1.
    Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015).,
  2. 2.
    Bernardino, A., Santos-Victor, J.: A real-time gabor primal sketch for visual attention. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 335–342. Springer, Heidelberg (2005). doi: 10.1007/11492429_41 CrossRefGoogle Scholar
  3. 3.
    Bursa, M., Lhotska, L., Chudacek, V., Spilka, J., Janku, P., Hruban, L.: Information retrieval from hospital information system: Increasing effectivity using swarm intelligence. J. Appl. Logic 13(2, Pt. A), 126–137 (2015)., sI: SOCO12
  4. 4.
    Chudacek, V., Spilka, J., Bursa, M., Janku, P., Hruban, L., Huptych, M., Lhotska, L.: Open access intrapartum ctg database. BMC Pregnancy Childbirth 14, 16 (2014)CrossRefGoogle Scholar
  5. 5.
    Chudáček, V., Spilka, J., Huptych, M., Lhotská, L.: Linear and non-linear features for intrapartum cardiotocography evaluation. Computing in Cardiology 2010 Preprints. IEEE, New Jersey (2015)Google Scholar
  6. 6.
    Doret, M., Spilka, J., Chudáček, V., Gonçalves, P., Abry, P.: Fractal Analysis and Hurst Parameter for intrapartum fetal heart rate variability analysis: A versatile alternative to Frequency bands and LF/HF ratio. PLoS ONE 10(8), e0136661 (2015).
  7. 7.
    Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000). Circulation Electronic Pages:
  8. 8.
    Hruban, L., Spilka, J., Chudáček, V., Janků, P., Huptych, M., Burša, M., Hudec, A., Kacerovský, M., Koucký, M., Procházka, M., Korečko, V., Seget’a, J., Šimetka, O., Mchurová, A., Lhotská, L.: Agreement on intrapartum cardiotocogram recordings between expert obstetricians. J. Eval. Clin. Pract., May 2015.
  9. 9.
    Huser, M., Janku, P., Hudecek, R., Zbozinkova, Z., Bursa, M., Unzeitig, V., Ventruba, P.: Pelvic floor dysfunction after vaginal and cesarean delivery among singleton primiparas. Int. J. Gynecol. Obstet. 137(2), 170–173 (2017).
  10. 10.
    Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980 (2014).
  11. 11.
    Spilka, J., Frecon, J., Leonarduzzi, R., Pustelnik, N., Abry, P., Doret, M.: Sparse support vector machine for intrapartum fetal heart rate classification. IEEE J. Biomed. Health Inform. 21(3), 664–671 (2017)CrossRefGoogle Scholar
  12. 12.
    Spilka, J., Chudáček, V., Janků, P., Hruban, L., Burša, M., Huptych, M., Zach, L., Lhotská, L.: Analysis of obstetricians decision making on CTG recordings. J. Biomed. Inform. 51(0), 72–79 (2014).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Czech Institute of Informatics, Robotics and CyberneticsCzech Technical University in PraguePragueCzech Republic

Personalised recommendations