Skip to main content

Rare Acute Leukemia Variants Involving Retinoic Acid Receptor Genes

  • Chapter
  • First Online:
Acute Promyelocytic Leukemia

Abstract

Acute promyelocytic leukemia (APL) is typically characterized by the balanced reciprocal translocation t(15;17)(q24.1;q21.2) which fuses the promyelocytic leukemia (PML) and retinoic acid receptor-α (RARA) gene. PML-RARA oncoprotein is the key pathogenetic player in APL pathogenesis and acts through the transcriptional repression on multiple RARA target genes, causing the inhibition of cellular differentiation and uncontrolled proliferation of undifferentiated elements [1]. Rarely, patients presenting with clinical and morphological features suggestive of APL lack either cytogenetic evidence of t(15;17) or molecular evidence of PML-RARA and are subsequently recognized to harbor instead variant translocations involving RARA gene fused to partner genes other than PML To date, at least 12 variant translocations involving RARA have been identified, including ZBTB16/RARA (formerly named PLZF-RARA) [6], NPM-RARA, NuMA-RARA, STAT5B/RARA, PRKAR1A/RARA, BCOR/RARA, FIP1L1/RARA, OBFC2A/RARA, GTF2I/RARA , and the most recent IRF2BP2/RARA and FNDC3B/RARA . Opposite to PML-RARA-positive APL, these variant translocations display in the majority of cases low or none sensitivity to specific target agents as arsenic trioxide (ATO) and all-trans-retinoic acid (ATRA). We will discuss in details the clinico-biologic characteristics of the different variant translocations reported up to date

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. de Thé H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991;66(4):675–84.

    Article  PubMed  Google Scholar 

  2. Grimwade D, Biondi A, Mozziconacci MJ, Hagemeijer A, Berger R, Neat M, et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Groupe Francais de Cytogenetique Hematologique, Groupe de Francais d’Hematologie Cellulaire, UK Cancer Cytogenetics Group and BIOME. Blood. 2000;96(4):1297–308.

    CAS  PubMed  Google Scholar 

  3. Wang ZY, Chen Z. Acute promyelocytic leukemia: from highly fatal to highly curable. Blood. 2008;111:2505–15.

    Article  CAS  PubMed  Google Scholar 

  4. Such E, Cervera J, Valencia A, Barragan E, Ibanez M, Luna I, et al. A novel NUP98/RARG gene fusion in acute myeloid leukemia resembling acute promyelocytic leukemia. Blood. 2011;117(1):242–5.

    Article  CAS  PubMed  Google Scholar 

  5. Ha J-S, Do YR, Ki C-S, Lee C, Kim D-H, Lee W, et al. Identification of a novel PML-RARG fusion in acute promyelocytic leukemia. Leukemia. 2017;31(9):1992–1995.

    Article  CAS  PubMed  Google Scholar 

  6. Chen SJ, Zelent A, Tong JH, Yu HQ, Wang ZY, Derre J, et al. Rearrangements of the retinoic acid receptor alpha and promyelocytic leukemia zinc finger genes resulting from t(11;17)(q23;q21) in a patient with acute promyelocytic leukemia. J Clin Invest. 1993;91(5):2260–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wells RA, Catzavelos C, Kamel-Reid S. Fusion of retinoic acid receptor α to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet [Internet]. 1997;17(1):109–13. http://www.nature.com/doifinder/10.1038/ng0997-109

    Article  CAS  Google Scholar 

  8. Arnould C, Philippe C, Bourdon V, Grégoire MJ, Berger R, Jonveaux P. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor α in acute promyelocytic-like leukaemia. Hum Mol Genet. 1999;8(9):1741–9.

    Article  CAS  PubMed  Google Scholar 

  9. Catalano A, Dawson MA, Somana K, Opat S, Schwarer A, Campbell LJ, et al. Brief report: the PRKAR1A gene is fused to RARA in a new variant acute promyelocytic leukemia. Blood. 2007;110(12):4073–6.

    Article  CAS  PubMed  Google Scholar 

  10. Yamamoto Y, Tsuzuki S, Tsuzuki M, Handa K, Inaguma Y, Emi N. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood. 2010;116(20):4274–83.

    Article  CAS  PubMed  Google Scholar 

  11. Kondo T, Mori A, Darmanin S, Hashino S, Tanaka J, Asaka M. The seventh pathogenic fusion gene FIP1L1-RARA was isolated from a t(4;17)-positive acute promyelocytic leukemia. Haematologica. 2008;93:1414–6. Italy.

    Article  CAS  PubMed  Google Scholar 

  12. Won D, Shin SY, Park CJ, Jang S, Chi HS, Lee KH, et al. OBFC2A/RARA: a novel fusion gene in variant acute promyelocytic leukemia. Blood [Internet]. 2013;121(8):1432–5. http://www.ncbi.nlm.nih.gov/pubmed/23287866

    Article  CAS  Google Scholar 

  13. Li J, Zhong H-Y, Zhang Y, Xiao L, Bai L-H, Liu S-F, et al. GTF2I-RARA is a novel fusion transcript in a t(7;17) variant of acute promyelocytic leukaemia with clinical resistance to retinoic acid. Br J Haematol. 2015;168:904–8. England.

    Article  PubMed  Google Scholar 

  14. Yin CC, Jain N, Mehrotra M, Zhang J, Protopopov A, Zuo Z, et al. Identification of a novel fusion gene, IRF2BP2-RARA, in acute promyelocytic leukemia. J Natl Compr Canc Netw. 2015;13(1):19–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng CK, Wang AZ, Wong THY, Wan TSK, Cheung JS, Raghupathy R, et al. FNDC3B is another novel partner fused to RARA in the t(3;17)(q26;q21) variant of acute promyelocytic leukemia. Blood. 2017;129:2705–9.

    Article  CAS  PubMed  Google Scholar 

  16. Sainty D, Liso V, Cantù-Rajnoldi A, Head D, Mozziconacci MJ, Arnoulet C, et al. A new morphologic classification system for acute promyelocytic leukemia distinguishes cases with underlying PLZF/RARA gene rearrangements. Blood [Internet]. 2000;96(4):1287–96. http://www.ncbi.nlm.nih.gov/pubmed/10942370

    CAS  Google Scholar 

  17. Redner RL. Variations on a theme: the alternate translocations in APL. Leuk Off J Leuk Soc Am Leuk Res Fund UK. 2002;16(10):1927–32.

    Article  CAS  Google Scholar 

  18. He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A, et al. Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet. 1998;18(2):126–35.

    Article  CAS  PubMed  Google Scholar 

  19. Koken MH, Daniel MT, Gianni M, Zelent A, Licht J, Buzyn A, et al. Retinoic acid, but not arsenic trioxide, degrades the PLZF/RARalpha fusion protein, without inducing terminal differentiation or apoptosis, in a RA-therapy resistant t(11;17)(q23;q21) APL patient. Oncogene [Internet]. 1999;18(4):1113–8. http://www.ncbi.nlm.nih.gov/pubmed/10023688

    Article  CAS  Google Scholar 

  20. Rego EM, He LZ, Warrell RPJ, Wang ZG, Pandolfi PP. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins. Proc Natl Acad Sci U S A. 2000;97(18):10173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Licht JD, Chomienne C, Goy A, Chen A, Scott AA, Head DR, et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood [Internet]. 1995;85(4):1083–94. http://www.bloodjournal.org/content/85/4/1083.abstract

    CAS  Google Scholar 

  22. Jansen JH, de Ridder MC, Geertsma WM, Erpelinck CA, van Lom K, Smit EM, et al. Complete remission of t(11;17) positive acute promyelocytic leukemia induced by all-trans retinoic acid and granulocyte colony-stimulating factor. Blood [Internet]. 1999;94(1):39–45. m:%5CProject Team Management%5CPreclinical Programs%5CScientific Information%5CPDF Articles%5CBLD94(1)39.pdf

    Google Scholar 

  23. Petti MC, Fazi F, Gentile M, Diverio D, De Fabritiis P, De Propris MS, et al. Complete remission through blast cell differentiation in PLZF/RARalpha-positive acute promyelocytic leukemia: in vitro and in vivo studies. Blood. 2002;100(3):1065–7.

    Article  CAS  PubMed  Google Scholar 

  24. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood [Internet]. 1996;87(3):882–6. http://www.ncbi.nlm.nih.gov/pubmed/8562957

    CAS  Google Scholar 

  25. Yung BYM. Oncogenic role of nucleophosmin/B23. Chang Gung Med J. 2007;30(4):285–93.

    PubMed  Google Scholar 

  26. Morris S, Kirstein M, Valentine M, Dittmer K, Shapiro D, Saltman D, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science [Internet]. 1994;263(5151):1281–4. http://www.sciencemag.org/cgi/doi/10.1126/science.8122112

    CAS  Google Scholar 

  27. Yoneda-Kato N, Look AT, Kirstein MN, Valentine MB, Raimondi SC, Cohen KJ, et al. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene [Internet]. 1996;12(2):265–75. http://www.ncbi.nlm.nih.gov/pubmed/8570204

    CAS  Google Scholar 

  28. Falini B, Nicoletti I, Martelli MF, Mecucci C. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood. 2007;109:874–85.

    Article  CAS  PubMed  Google Scholar 

  29. Corey SJ, Locker J, Oliveri DR, Shekhter-Levin S, Redner RL, Penchansky L, et al. A non-classical translocation involving 17q12 (retinoic acid receptor alpha) in acute promyelocytic leukemia (APML) with atypical features. Leukemia [Internet]. 1994;8(8):1350–3. http://www.ncbi.nlm.nih.gov/pubmed/8057672

    CAS  Google Scholar 

  30. Kikuma T, Nakamachi Y, Noguchi Y, Okazaki Y, Shimomura D, Yakushijin K, et al. A new transcriptional variant and small azurophilic granules in an acute promyelocytic leukemia case with NPM1/RARA fusion gene. Int J Hematol. 2015;102(6):713–8.

    Article  CAS  PubMed  Google Scholar 

  31. Redner RL, Corey SJ, Rush EA. Differentiation of t(5;17) variant acute promyelocytic leukemic blasts by all-trans retinoic acid. Leukemia [Internet]. 1997;11(7):1014–6. http://www.ncbi.nlm.nih.gov/pubmed/9204984

    Article  CAS  Google Scholar 

  32. Chattopadhyay A, Hood BL, Conrads TP, Redner RL. Extrinsic apoptosis is impeded by direct binding of the APL fusion protein NPM-RAR to TRADD. Mol Cancer Res [Internet]. 2014;12(9):1283–91. http://www.ncbi.nlm.nih.gov/pubmed/25033841

    Article  CAS  Google Scholar 

  33. Chen Y, Gu L, Zhou C, Wu X, Gao J, Li Q, et al. Relapsed APL patient with variant NPM-RARalpha fusion responded to arsenic trioxide-based therapy and achieved long-term survival. Int J Hematol. 2010;91(4):708–10.

    Article  PubMed  Google Scholar 

  34. Saredi A, Howard L, Compton DA. NuMA assembles into an extensive filamentous structure when expressed in the cell cytoplasm. J Cell Sci [Internet]. 1996;109(Pt 3):619–30. http://www.ncbi.nlm.nih.gov/pubmed/8907707

    CAS  Google Scholar 

  35. Wells RA, Hummel JL, De Koven A, Zipursky A, Kirby M, Dubé I, et al. A new variant translocation in acute promyelocytic leukaemia: molecular characterization and clinical correlation. Leuk Off J Leuk Soc Am Leuk Res Fund, UK [Internet]. 1996;10(4):735–40. http://www.ncbi.nlm.nih.gov/pubmed/8618456

    CAS  Google Scholar 

  36. Sukhai MA, Wu X, Xuan Y, Zhang T, Reis PP, Dubé K, et al. Myeloid leukemia with promyelocytic features in transgenic mice expressing hCG-NuMA-RARalpha. Oncogene [Internet]. 2004;23(3):665–78. http://www.ncbi.nlm.nih.gov/pubmed/14737102

    Article  CAS  Google Scholar 

  37. Bromberg J. Stat proteins and oncogenesis. J Clin Investig. 2002;109:1139–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Strehl S, Konig M, Boztug H, Cooper BW, Suzukawa K, Zhang S-J, et al. All-trans retinoic acid and arsenic trioxide resistance of acute promyelocytic leukemia with the variant STAT5B-RARA fusion gene. Leukemia. 2013;27:1606–10. England.

    Article  PubMed  Google Scholar 

  39. Dong S, Tweardy DJ. Interactions of STAT5b-RARalpha, a novel acute promyelocytic leukemia fusion protein, with retinoic acid receptor and STAT3 signaling pathways. Blood. 2002;99(8):2637–46.

    Article  CAS  PubMed  Google Scholar 

  40. Pessina C, Basilico C, Genoni A, Meroni E, Elli L, Granata P, et al. A new acute myeloid leukemia case with STAT5B-RARA gene fusion due to 17q21.2 interstitial deletion. Leuk Lymphoma. 2017;58(8):1977–80.

    Article  PubMed  Google Scholar 

  41. Wang Y-Y, Hao J, Liu Z-Y, Weng X-Q, Sheng Y, Jiang C-L, et al. Novel STAT5B-RARA fusion transcript in acute promyelocytic leukemia: identification and treatment response. Leuk Lymphoma. 2015;56:2731–4. England.

    Article  Google Scholar 

  42. Kluk MJ, Abo RP, Brown RD, Kuo FC, Dal Cin P, Pozdnyakova O, et al. Myeloid neoplasm demonstrating a STAT5B-RARA rearrangement and genetic alterations associated with all-trans retinoic acid resistance identified by a custom next-generation sequencing assay. Cold Spring Harb Mol case Stud. 2015;1(1):a000307.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bossis I, Stratakis CA. Minireview: PRKAR1A: normal and abnormal functions. Endocrinology. 2004;145:5452–8.

    Article  CAS  PubMed  Google Scholar 

  44. Bongarzone I, Monzini N, Borrello MG, Carcano C, Ferraresi G, Arighi E, et al. Molecular characterization of a thyroid tumor-specific transforming sequence formed by the fusion of ret tyrosine kinase and the regulatory subunit RI alpha of cyclic AMP-dependent protein kinase A. Mol Cell Biol. 1993;13(1):358–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bertherat J, Groussin L, Sandrini F, Matyakhina L, Bei T, Stergiopoulos S, et al. Molecular and functional analysis of PRKAR1A and its locus (17q22-24) in sporadic adrenocortical tumors: 17q losses, somatic mutations, and protein kinase a expression and activity. Cancer Res. 2003;63(17):5308–19.

    CAS  PubMed  Google Scholar 

  46. Cools J, Stover EH, Gilliland DG. Detection of the FIP1L1-PDGFRA fusion in idiopathic hypereosinophilic syndrome and chronic eosinophilic leukemia. Methods Mol Med. 2006;125(4):177–87.

    CAS  PubMed  Google Scholar 

  47. Buijs A. Bruin M. Fusion of FIP1L1 and RARA as a result of a novel t(4;17)(q12;q21) in a case of juvenile myelomonocytic leukemia. Leukemia. 2007;21:1104–8. England.

    Article  CAS  PubMed  Google Scholar 

  48. Ghetu AF, Corcoran CM, Cerchietti L, Bardwell VJ, Melnick A, Privé GG. Structure of a BCOR corepressor peptide in complex with the BCL6 BTB domain dimer. Mol Cell. 2008;29(3):384–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fan Z, Yamaza T, Lee JS, Yu J, Wang S, Fan G, et al. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol [Internet]. 2009;11(8):1002–9.

    Article  CAS  PubMed Central  Google Scholar 

  50. Ng D, Thakker N, Corcoran CM, Donnai D, Perveen R, Schneider A, et al. Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat Genet [Internet]. 2004;36(4):411–6.

    Article  CAS  Google Scholar 

  51. Roy AL. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I: 10 years later. Gene. 2012;492:32–41.

    Article  CAS  PubMed  Google Scholar 

  52. Nyquist KB, Panagopoulos I, Thorsen J, Haugom L, Gorunova L, Bjerkehagen B, et al. Whole-transcriptome sequencing identifies novel IRF2BP2-CDX1 fusion gene brought about by translocation t(1;5)(q42;q32) in mesenchymal chondrosarcoma. PLoS One. 2012;7(11):e49705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schuh A, Becq J, Humphray S, Alexa A, Burns A, Clifford R, et al. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood. 2012;120(20):4191–6.

    Article  CAS  PubMed  Google Scholar 

  54. Bruno A, Boisselier B, Labreche K, Marie Y, Polivka M, Jouvet A, et al. Mutational analysis of primary central nervous system lymphoma. Oncotarget. 2014;5(13):5065–75.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jovanovic JV, Carmen Chillón M, Vincent-Fabert C, Dillon R, Voisset E, Gutiérrez NC, et al. The IRF2BP2-RARα fusion generated by a cryptic rearrangement transforms hematopoietic stem/progenitor cells and induces retinoid sensitive acute promyelocytic leukemia (APL). Blood [Internet]. 2014;124(21):2325.

    Google Scholar 

  56. Jovanovic JV, Chillon MC, Vincent-Fabert C, Dillon R, Voisset E, Gutierrez NC, et al. The cryptic IRF2BP2-RARA fusion transforms hematopoietic stem/progenitor cells and induces retinoid-sensitive acute promyelocytic leukemia. Leukemia. 2017;31(3):747–51.

    Article  CAS  PubMed  Google Scholar 

  57. Yin CC, Jain N, Mehrotra M, Zhagn J, Protopopov A, Zuo Z, et al. Identification of a novel fusion gene, IRF2BP2-RARA, in acute promyelocytic leukemia. J Natl Compr Canc Netw [Internet]. 2015;13(1):19–22.

    Article  CAS  Google Scholar 

  58. Adams J, Nassiri M. Acute promyelocytic leukemia a review and discussion of variant translocations. Arch Pathol Lab Med. 2015;139:1308–13.

    Article  CAS  Google Scholar 

  59. Guidez F, Ivins S, Zhu J, Söderström M, Waxman S, Zelent A. Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARα underlie molecular pathogenesis and treatment of acute Promyelocytic Leukemia. Blood [Internet]. 1998;91(8):2634–42.

    CAS  PubMed  Google Scholar 

  60. Iwasaki J, Kondo T, Darmanin S, Ibata M, Onozawa M, Hashimoto D, et al. FIP1L1 presence in FIP1L1-RARA or FIP1L1-PDGFRA differentially contributes to the pathogenesis of distinct types of leukemia. Ann Hematol. 2014;93(9):1473–81.

    Article  CAS  PubMed  Google Scholar 

  61. Lo-Coco F, Avvisati G, Vignetti M, Thiede C, Orlando SM, Iacobelli S, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369(2):111–21.

    Article  CAS  PubMed  Google Scholar 

  62. Di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, et al. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Asp Med. 2015;41:1–115.

    Google Scholar 

  63. Moore MAS, Chung KY, Plasilova M, Schuringa JJ, Shieh JH, Zhou P, et al. NUP98 dysregulation in myeloid leukemogenesis. Ann N Y Acad Sci. 2007;1106:114–42.

    Article  CAS  PubMed  Google Scholar 

  64. Qiu JJ, Zeisig BB, Li S, Liu W, Chu H, Song Y, et al. Critical role of retinoid/rexinoid signaling in mediating transformation and therapeutic response of NUP98-RARG leukemia. Leukemia [Internet]. 2015;29(5):1153–62.

    Article  CAS  Google Scholar 

  65. Such E, Cordon L, Sempere A, Villamon E, Ibanez M, Luna I, et al. In vitro all-trans retinoic acid sensitivity of acute myeloid leukemia blasts with NUP98/RARG fusion gene. Ann Hematol. 2014;93:1931–3. Germany.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Cicconi M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Cicconi, L., Abla, O. (2018). Rare Acute Leukemia Variants Involving Retinoic Acid Receptor Genes. In: Abla, O., Lo Coco, F., Sanz, M. (eds) Acute Promyelocytic Leukemia . Springer, Cham. https://doi.org/10.1007/978-3-319-64257-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64257-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64256-7

  • Online ISBN: 978-3-319-64257-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics