Simple Infeasibility Certificates for Attack Trees

  • Ahto Buldas
  • Aleksandr LeninEmail author
  • Jan Willemson
  • Anton Charnamord
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10418)


We introduce infeasibility certificates, compact and easily verifiable proofs that no profitable attacks exist in the considered system model. We introduce computational methods for generation and validation of such proofs using an enhanced weight reduction technique. A new method for obtaining adversarial expenses by approximating an interval within which this value resides, is an interesting approach to tackle NP-complete tasks and allows to obtain values that require extensive computations in reasonable time.


  1. 1.
    Ahmadi, A.A., Olshevsky, A., Parrilo, P.A., Tsitsiklis, J.N.: NP-hardness of deciding convexity of quartic polynomials and related problems. Math. Program. 137(1), 453–476 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational choice of security measures via multi-parameter attack trees. In: Lopez, J. (ed.) CRITIS 2006. LNCS, vol. 4347, pp. 235–248. Springer, Heidelberg (2006). doi: 10.1007/11962977_19 CrossRefGoogle Scholar
  3. 3.
    Buldas, A., Lenin, A.: New efficient utility upper bounds for the fully adaptive model of attack trees. In: Das, S.K., Nita-Rotaru, C., Kantarcioglu, M. (eds.) GameSec 2013. LNCS, vol. 8252, pp. 192–205. Springer, Cham (2013). doi: 10.1007/978-3-319-02786-9_12 CrossRefGoogle Scholar
  4. 4.
    Buldas, A., Stepanenko, R.: Upper bounds for adversaries’ utility in attack trees. In: Grossklags, J., Walrand, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp. 98–117. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34266-0_6 CrossRefGoogle Scholar
  5. 5.
    Blekherman, G., Parrilo, P.A., Thomas, R.R.: Semidefinite Optimization and Convex Algebraic Geometry. Society for Industrial and Applied Mathematics, Philadelphia (2012)CrossRefzbMATHGoogle Scholar
  6. 6.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Corbineau, P.: A declarative language for the Coq proof assistant. In: Miculan, M., Scagnetto, I., Honsell, F. (eds.) TYPES 2007. LNCS, vol. 4941, pp. 69–84. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-68103-8_5 CrossRefGoogle Scholar
  8. 8.
    De Loera, J.A., Lee, J., Malkin, P.N., Margulies, S.: Computing infeasibility certificates for combinatorial problems through hilbert’s nullstellensatz. J. Symb. Comput. 46(11), 1260–1283 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Helton, J.W., Nie, J.: Semidefinite representation of convex sets. Math. Program. 122(1), 21–64 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hillar, C., Lim, L.-H.: Most tensor problems are np-hard. J. ACM 60(6), 4:51–45:39 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jürgenson, A., Willemson, J.: Computing exact outcomes of multi-parameter attack trees. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp. 1036–1051. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88873-4_8 CrossRefGoogle Scholar
  12. 12.
    Jürgenson, A., Willemson, J.: Serial model for attack tree computations. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 118–128. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14423-3_9 CrossRefGoogle Scholar
  13. 13.
    Jürgenson, A., Willemson, J.: On fast and approximate attack tree computations. In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.) ISPEC 2010. LNCS, vol. 6047, pp. 56–66. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12827-1_5 Google Scholar
  14. 14.
    Lenin, A.: Reliable and Efficient Determination of the Likelihood of Rational Attacks. TUT Press, Tallinn (2015)Google Scholar
  15. 15.
    Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). doi: 10.1007/11734727_17 CrossRefGoogle Scholar
  16. 16.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78800-3_24 CrossRefGoogle Scholar
  17. 17.
    Prajna, S., Papachristodoulou, A., Seiler, P., Parrilo, P.A.: Sostools: Sum of squares optimization toolbox for matlab (2004)Google Scholar
  18. 18.
    Schneier, B.: Attack trees. Dr. Dobb’s J. Softw. Tools 24(12), 21–22, 24, 26, 28–29, December 1999Google Scholar
  19. 19.
    Smith, K.E., Kahanpää, L., Kekäläinen, P., et al.: An Invitation to Algebraic Geometry. Universitext. Springer Science + Business Media, New York (2000)CrossRefzbMATHGoogle Scholar
  20. 20.
    Stengle, G.: A nullstellensatz and a positivstellensatz in semialgebraic geometry. Math. Ann. 207, 87–98 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Stengle, G.: A nullstellensatz and positivstellensatz in semialgebraic geometry. Math. Ann. 207, 87–97 (1994)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ahto Buldas
    • 1
    • 2
  • Aleksandr Lenin
    • 1
    • 2
    • 3
    Email author
  • Jan Willemson
    • 1
    • 3
  • Anton Charnamord
    • 2
  1. 1.Cybernetica ASTallinnEstonia
  2. 2.Tallinn University of TechnologyTallinnEstonia
  3. 3.Software Technology and Applications Competence CentreTallinnEstonia

Personalised recommendations