Advertisement

Temporal Integration Based Visual Cryptography Scheme and Its Application

  • Wen Wang
  • Feng Liu
  • Teng Guo
  • Yawei Ren
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10431)

Abstract

Visual cryptography scheme (VCS) is an image secret sharing method which exploits the spatial responds characteristics of Human visual system (HVS). Applications of traditional OR and XOR based VCSs are seriously limited by the implementation carrier in practice. In this paper, we proposed a new kind of VCS which is implemented on modern display terminal of high refresh rates. Our approach exploits the temporal responds characteristics of HVS that light signals are temporal integrated into a single steady continuous one if the frequency exceeds critical fusion frequency (CFF). Furthermore, basing on the proposed VCS, we implement an information security display technology that can prevent unauthorized photography. Only authorized viewers can recover the secret information with the help of synchronized glass. While unauthorized viewers with naked eye or camera get nothing about the secret information. Experimental results show the effectiveness of proposed temporal integration based VCS and information security display technology.

Keywords

Visual cryptography scheme Human visual system Critical fusion frequency Information security display 

Notes

Acknowledgments

Many thanks to the anonymous reviewers for their valuable comments to improve our work. This work was supported by the National Key R&D Program of China with No. 2016YFB0800100, NSFC No. 61671448 and the Scientific Research Project of Beijing Municipal Educational Committee Grant No. 71E1610972.

References

  1. 1.
    Ateniese, G., Blundo, C., De Santis, A., Stinson, D.R.: Visual cryptography for general access structures. Inf. Comput. 129(2), 86–106 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    BenEzra, O., Herzog, R., Cohen, E., Karshai, I., BenEzra, D.: Liquid crystal glasses: feasibility and safety of a new modality for treating amblyopia. Arch. Ophthalmol. 125(4), 580–581 (2007)CrossRefGoogle Scholar
  3. 3.
    Biham, E., Itzkovitz, A.: Visual cryptography with polarization (1998)Google Scholar
  4. 4.
    Blundo, C., De Santis, A., Stinson, D.R.: On the contrast in visual cryptography schemes. J. Cryptol. 12(4), 261–289 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Galifret, Y.: Visual persistence and cinema? Comptes Rendus Biologies 329(5), 369–385 (2006)CrossRefGoogle Scholar
  6. 6.
    Gao, Z., Zhai, G., Min, X.: Information security display system based on temporal psychovisual modulation. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 449–452. IEEE (2014)Google Scholar
  7. 7.
    Kalloniatis, M., Luu, C.: Temporal resolution. www.webvision.med.utah.edu/temporal.html
  8. 8.
    Lee, P.-M., Chen, H.-Y.: Adjustable gamma correction circuit for TFT LCD. In: 2005 IEEE International Symposium on Circuits and Systems, pp. 780–783. IEEE (2005)Google Scholar
  9. 9.
    Liu, F., Wu, C.: Optimal XOR based (2, n)-visual cryptography schemes. In: International Workshop on Digital Watermarking, pp. 333–349. Springer, Heidelberg (2014)Google Scholar
  10. 10.
    Liu, F., Wu, C., Qian, L., et al.: Improving the visual quality of size invariant visual cryptography scheme. J. Vis. Commun. Image Representation 23(2), 331–342 (2012)CrossRefGoogle Scholar
  11. 11.
    Liu, F., Yan, W.Q.: Visual Cryptography for Image Processing and Security, vol. 2. Springer, New York (2014)zbMATHGoogle Scholar
  12. 12.
    Naor, M., Shamir, A.: Visual cryptography. In: Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995). doi: 10.1007/BFb0053419 Google Scholar
  13. 13.
    Parraga, C.A., Roca-Vila, J., Karatzas, D., Wuerger, S.M.: Limitations of visual gamma corrections in LCD displays. Displays 35(5), 227–239 (2014)CrossRefGoogle Scholar
  14. 14.
    Porter, T.: Contributions to the study of flicker, paper iii. Proc. R. Soc. London Ser. A Containing Papers Math. Phys. Charact. 86(590), 495–513 (1912)CrossRefGoogle Scholar
  15. 15.
    Porter, T.C.: Contributions to the study of flicker. Paper ii. Proc. R. Soc. London 70(459–466), 313–329 (1902)CrossRefGoogle Scholar
  16. 16.
    Shi, L., Yu, B.: Optimization of XOR visual cryptography scheme. In: 2011 International Conference on Computer Science and Network Technology (ICCSNT), vol. 1, pp. 297–301. IEEE (2011)Google Scholar
  17. 17.
    Shyu, S.J., Chen, M.C.: Optimum pixel expansions for threshold visual secret sharing schemes. IEEE Trans. Inf. Forensics Secur. 6(3), 960–969 (2011)CrossRefGoogle Scholar
  18. 18.
    Shyu, S.J., Jiang, H.-W.: General constructions for threshold multiple-secret visual cryptographic schemes. IEEE Trans. Inf. Forensics Secur. 8(5), 733–743 (2013)CrossRefGoogle Scholar
  19. 19.
    Spierer, A., Raz, J., BenEzra, O., Herzog, R., Cohen, E., Karshai, I., BenEzra, D.: Treating amblyopia with liquid crystal glasses: a pilot study. Invest. Ophthalmol. Vis. Sci. 51(7), 3395–3398 (2010)CrossRefGoogle Scholar
  20. 20.
    Talbot, H.F.: Experiments on light. Lond. Edinb. Philos. Mag. J. Sci. 5(29), 321–334 (1834)Google Scholar
  21. 21.
    Tuyls, P., Hollmann, H., Lint, H., Tolhuizen, L.: A polarisation based visual crypto system and its secret sharing schemes (2002)Google Scholar
  22. 22.
    Tuyls, P., Hollmann, H.D., Lint, J.V., Tolhuizen, L.: XOR-based visual cryptography schemes. Des. Codes Crypt. 37(1), 169–186 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Walton, H.G., Brownlow, M., Lock, J., Rahal, M., Zebedee, P.: LCD gamma correction by nonlinear digital-to-analogue converter. In: Electronic Imaging 2003, pp. 170–178. International Society for Optics and Photonics (2003)Google Scholar
  24. 24.
    Wang, W., Liu, F., Guo, T., Ren, Y., Shen, G.: Information security display technology with multi-view effect. In: Shi, Y.Q., Kim, H.J., Perez-Gonzalez, F., Liu, F. (eds.) IWDW 2016. LNCS, vol. 10082, pp. 198–208. Springer, Cham (2017). doi: 10.1007/978-3-319-53465-7_15 CrossRefGoogle Scholar
  25. 25.
    Wang, W., Liu, F., Yan, W., Shen, G., Guo, T.: An improved aspect ratio invariant visual cryptography scheme with flexible pixel expansion. In: Shi, Y.-Q., Kim, H.J., Pérez-González, F., Echizen, I. (eds.) IWDW 2015. LNCS, vol. 9569, pp. 418–432. Springer, Cham (2016). doi: 10.1007/978-3-319-31960-5_34 CrossRefGoogle Scholar
  26. 26.
    Woo, J.-H., Lee, J.-G., Jun, Y.-H., Kong, B.-S.: Accurate quadruple-gamma-curve correction for line inversion-based mobile tft-lcd driver ics. IEEE Transactions on Consumer Electronics 59(3), 443–451 (2013)CrossRefGoogle Scholar
  27. 27.
    Xiao, K., Fu, C., Karatzas, D., Wuerger, S.: Visual gamma correction for LCD displays. Displays 32(1), 17–23 (2011)CrossRefGoogle Scholar
  28. 28.
    Yang, C.-N., Wang, D.-S.: Property analysis of XOR-based visual cryptography. IEEE Trans. Circ. Syst. Video Technol. 24(2), 189–197 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.School of Cyber SecurityUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.School of Information Science and TechnologyUniversity of International RelationsBeijingChina
  4. 4.School of Information ManagementBeijing Information Science and Technology UniversityBeijingChina

Personalised recommendations