Image Quality Assessment in Reversible Data Hiding with Contrast Enhancement

  • Hao-Tian WuEmail author
  • Shaohua Tang
  • Yun-Qing Shi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10431)


In this paper, image quality assessment (IQA) in reversible data hiding with contrast enhancement (RDH-CE) is studied. Firstly, the schemes of RDH-CE are reviewed, with which image contrast can be enhanced without any information loss. Secondly, the limitations of using the peak signal-to-noise ratio (PSNR) to indicate image quality in the scenario of RDH-CE are discussed. Subsequently, three no-reference IQA metrics and four metrics specially designed for contrast-changed images are adopted, in addition to PSNR and structural similarity (SSIM) index. By using these metrics, the evaluation results on the contrast-enhanced images generated with two RDH-CE schemes are obtained and compared. The experimental results have shown that the no-reference IQA metrics, the blind/referenceless image spatial quality evaluator (BRISQUE) for instance, are more suitable than PSNR and SSIM index for the images that have been enhanced by the RDH-CE schemes. Furthermore, how to use the suitable IQA metrics has been discussed for performance evaluation of RDH-CE schemes.


Image quality assessment Contrast enhancement Reversible data hiding Visual quality 



This work was supported by National Natural Science Foundation of China (No. 61632013), Natural Science Foundation of Jiangsu Province of China (No. BK20151131), Guangdong Provincial Natural Science Foundation of China (No. 2014A030308006), Guangdong Provincial Project of Science and Technology of China (No. 2016B090920081), and SCUT Fundamental Research Funds for the Central Universities of China (No. 2017MS038).


  1. 1.
    Shi, Y.Q., Li, X., Zhang, X., Wu, H., Ma, B.: Reversible data hiding: advances in the past two decades. IEEE Access 4, 3210–3237 (2016)CrossRefGoogle Scholar
  2. 2.
    Tian, J.: Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol. 13(8), 890–896 (2003)CrossRefGoogle Scholar
  3. 3.
    Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 16(3), 354–362 (2006)CrossRefGoogle Scholar
  4. 4.
    Sachnev, V., Kim, H.J., Nam, J., Suresh, S., Shi, Y.Q.: Reversible watermarking algorithm using sorting and prediction. IEEE Trans. Circuits Syst. Video Technol. 19(7), 989–999 (2009)CrossRefGoogle Scholar
  5. 5.
    Wu, H., Huang, J.: Reversible image watermarking on prediction error by efficient histogram modification. Sig. Process. 92(12), 3000–3009 (2012)CrossRefGoogle Scholar
  6. 6.
    Ou, B., Li, X., Zhao, Y., Ni, R., Shi, Y.Q.: Pairwise prediction-error expansion for efficient reversible data hiding. IEEE Trans. Image Process. 22(12), 5010–5021 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dragoi, I.C., Coltuc, D.: On local prediction based reversible watermarking. IEEE Trans. Image Process. 24(4), 1244–1246 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Li, X., Zhang, W., Gui, X., Yang, B.: Efficient reversible data hiding based on multiple histograms modification. IEEE Trans. Inf. Foren. Sec. 10(9), 2016–2027 (2015)CrossRefGoogle Scholar
  9. 9.
    Ma, B., Shi, Y.Q.: A reversible data hiding scheme based on code division multiplexing. IEEE Trans. Inf. Foren. Sec. 11(9), 1914–1927 (2016)CrossRefGoogle Scholar
  10. 10.
    Wang, J., Ni, J., Zhang, X., Shi, Y.Q.: Rate and distortion optimization for reversible data hiding using multiple histogram shifting. IEEE Trans. Cybern. 47(2), 315–326 (2017)Google Scholar
  11. 11.
    Wu, H., Dugelay, J.L., Shi, Y.Q.: Reversible image data hiding with contrast enhancement. IEEE Signal Process. Lett. 22(1), 81–85 (2015)CrossRefGoogle Scholar
  12. 12.
    Wu, H., Huang, J., Shi, Y.Q.: A reversible data hiding method with contrast enhancement for medical images. J. Vis. Commun. Image R. 31, 146–153 (2015)CrossRefGoogle Scholar
  13. 13.
    Wu, H.-T., Liu, Y., Shi, Y.-Q.: Reversible data hiding by median-preserving histogram modification for image contrast enhancement. In: Shi, Y.-Q., Kim, H.J., Pérez-González, F., Yang, C.-N. (eds.) IWDW 2014. LNCS, vol. 9023, pp. 289–301. Springer, Cham (2015). doi: 10.1007/978-3-319-19321-2_22 CrossRefGoogle Scholar
  14. 14.
    Gao, G., Shi, Y.Q.: Reversible data hiding using controlled contrast enhancement and integer wavelet transform. IEEE Signal Process. Lett. 22(11), 2078–2082 (2015)CrossRefGoogle Scholar
  15. 15.
    Yang, Y., Zhang, W., Liang, D., Yu, N.: Reversible data hiding in medical images with enhanced contrast in texture area. Digital Signal Process. 52, 13–24 (2016)CrossRefGoogle Scholar
  16. 16.
    Chen, H., Ni, J., Hong, W., Chen, T.S.: Reversible data hiding with contrast enhancement using adaptive histogram shifting and pixel value ordering. Signal Process. Image Commun. 46, 1–16 (2016)CrossRefGoogle Scholar
  17. 17.
    Gao, G., Wang, X., Yao, S., Cui, Z., Sun, X.: Reversible data hiding with contrast enhancement and tamper localization for medical images. Inf. Sci. 385–386, 250–C265 (2017)CrossRefGoogle Scholar
  18. 18.
    Kim, S., Lussi, R., Qu, X., Kim, H.J.: Automatic contrast enhancement using reversible data hiding. In: Proceedings of IEEE International Workshop on Information Forensics and Security, pp. 1–5 (2015)Google Scholar
  19. 19.
    Veen, M., Bruekers, F., Leest, A., Cavin, S.: High capacity reversible watermarking for audio. In: SPIE, Security, Steganography, and Watermarking of Multimedia Content, pp. 1–11 (2003)Google Scholar
  20. 20.
    Fridrich, J., Du, R.: Lossless authentication of MPEG-2 video. In: The International Conference on Image Processing, pp. 893–896 (2002)Google Scholar
  21. 21.
    Wu, H., Dugelay, J.L.: Reversible watermarking of 3D mesh models by prediction-error expansion. In: The International Workshop on Multimedia Signal Processing, pp. 797–802. (2008)Google Scholar
  22. 22.
    Wu, H., Cheung, Y.: Reversible watermarking by modulation and security enhancement. IEEE Trans. Inst. Measure. 59(1), 221–228 (2010)CrossRefGoogle Scholar
  23. 23.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error measurement to structural similarity. IEEE Trans. Image Process. 13(1), 600–612 (2004)CrossRefGoogle Scholar
  24. 24.
    Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)CrossRefGoogle Scholar
  25. 25.
    Gao, M.Z., Wu, Z.G., Wang, L.: Comprehensive evaluation for he based contrast enhancement techniques. Adv. Intell. Syst. Appl. 2, 331–338 (2013)Google Scholar
  26. 26.
    Howard, P.G., Kossentini, F., Martins, B., Forchhammer, S., Rucklidge, W.J.: The emerging JBIG2 standard. IEEE Trans. Circuits Syst. Video Technol. 8(7), 838–848 (1998)CrossRefGoogle Scholar
  27. 27.
    Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Zhang, Y., Moorthy, A.K., Chandler, D.M., Bovik, A.C.: C-DIIVINE: No-reference image quality assessment based on local magnitude and phase statistics of natural scenes. Sig. Process. Image Commun. 29(7), 725–747 (2014)CrossRefGoogle Scholar
  29. 29.
    Gu, K., Zhai, G., Yang, X., Zhang, W.: Using free energy principle for blind image quality assessment. IEEE Trans. Multimedia 17(1), 50–63 (2015)CrossRefGoogle Scholar
  30. 30.
    Moorthy, A.K., Bovik, A.C.: Blind image quality assessment: from scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Gu, K., Zhai, G., Yang, X., Zhang, W., Liu, M.: Subjective and objective quality assessment for images with contrast change. In: IEEE International Conference on Image Processing, pp. 383–387 (2013)Google Scholar
  32. 32.
    Fang, Y., Ma, K., Wang, Z., Lin, W., Fang, Z., Zhai, G.: No-reference quality assessment of contrast-distorted images based on natural scene statistics. IEEE Signal Process. Lett. 22(7), 838–842 (2015)Google Scholar
  33. 33.
    Wang, S., Ma, K., Yeganeh, H., Wang, Z., Lin, W.: A patch-structure representation method for quality assessment of contrast changed images. IEEE Signal Process. Lett. 22(12), 2387–2390 (2015)CrossRefGoogle Scholar
  34. 34.
    Gu, K., Lin, W., Zhai, G., Yang, X., Zhang, W., Chen, C.W.: No-reference quality metric of contrast-distorted images based on information maximization. IEEE Trans. Cybern. (in Press)Google Scholar
  35. 35.
    The USC-SIPI Image Database,

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Department of Electrical and Computer EngineeringNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations