Advertisement

Acquisition of Terminological Knowledge from Social Networks in Description Logic

  • Francesco Kriegel
Chapter
Part of the Lecture Notes in Social Networks book series (LNSN)

Abstract

The Web Ontology Language (OWL) has gained serious attraction since its foundation in 2004, and it is heavily used in applications requiring representation of as well as reasoning with knowledge. It is the language of the Semantic Web, and it has a strong logical underpinning by means of so-called Description Logics (DLs). DLs are a family of conceptual languages suitable for knowledge representation and reasoning due to their strong logical foundation, and for which the decidability and complexity of common reasoning problems are widely explored. In particular, the reasoning tasks allow for the deduction of implicit knowledge from explicitly stated facts and axioms, and plenty of appropriate algorithms were developed, optimized, and implemented, e.g., tableaux algorithms and completion algorithms. In this document, we present a technique for the acquisition of terminological knowledge from social networks. More specifically, we show how OWL axioms, i.e., concept inclusions and role inclusions in DLs, can be obtained from social graphs in a sound and complete manner. A social graph is simply a directed graph, the vertices of which describe the entities, e.g., persons, events, messages, etc.; and the edges of which describe the relationships between the entities, e.g., friendship between persons, attendance of a person to an event, a person liking a message, etc. Furthermore, the vertices of social graphs are labeled, e.g., to describe properties of the entities, and also the edges are labeled to specify the concrete relationships. As an exemplary social network we consider Facebook, and show that it fits our use case.

References

  1. 1.
    Baader, F.: Least common subsumers and most specific concepts in a description logic with existential restrictions and terminological cycles. In: Gottlob, G., Walsh, T. (eds.) IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, pp. 319–324, Acapulco, 9–15 August 2003. Morgan Kaufmann, San Francisco (2003). http://dblp.uni-trier.de/rec/bib/conf/ijcai/Baader03 Google Scholar
  2. 2.
    Baader, F., Distel, F.: A finite basis for the set of \(\mathcal{E\!L}\)-implications holding in a finite model. In: Medina, R., Obiedkov, S.A. (eds.) Formal Concept Analysis, Proceedings of the 6th International Conference, ICFCA 2008, Montreal, 25–28 February 2008. Lecture Notes in Computer Science, vol. 4933, pp. 46–61. Springer, Heidelberg (2008). DOI 10.1007/978-3-540-78137-0∖_4. http://dblp.uni-trier.de/rec/bib/conf/icfca/BaaderD08
  3. 3.
    Baader, F., Distel, F.: Exploring finite models in the description logic \(\mathcal{E\!L}_{\mathrm{gfp}}\). In: Ferré, S., Rudolph, S. (eds.) Formal Concept Analysis, Proceedings of the 7th International Conference, ICFCA 2009, Darmstadt, 21–24 May 2009. Lecture Notes in Computer Science, vol. 5548, pp. 146–161. Springer, Heidelberg (2009). DOI 10.1007/978-3-642-01815-2∖_12. http://dblp.uni-trier.de/rec/bib/conf/icfca/BaaderD09
  4. 4.
    Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in description logics with existential restrictions. In: Dean, T. (ed.) Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 99, pp. 96–103, Stockholm, 31 July–6 August 1999. 2 Volumes, 1450 pages. Morgan Kaufmann, San Francisco (1999). http://dblp.uni-trier.de/rec/bib/conf/ijcai/BaaderKM99 Google Scholar
  5. 5.
    Baader, F., Horrocks, I., Sattler, U.: Description logics. In: van Harmelen, F., Lifschitz, V., Porter, B.W. (eds.) Handbook of Knowledge Representation. Foundations of Artificial Intelligence, vol. 3, pp. 135–179. Elsevier, Amsterdam (2008). DOI 10.1016/S1574-6526(07)03003-9. http://dblp.uni-trier.de/rec/bib/reference/fai/3 CrossRefGoogle Scholar
  6. 6.
    Babin, M.A., Kuznetsov, S.O.: Recognizing pseudo-intents is coNP-complete. In: Kryszkiewicz, M., Obiedkov, S.A. (eds.) Proceedings of the 7th International Conference on Concept Lattices and Their Applications, Sevilla, 19–21 October 2010. CEUR Workshop Proceedings, vol. 672, pp. 294–301. CEUR-WS.org (2010). http://dblp.uni-trier.de/rec/bib/conf/cla/BabinK10
  7. 7.
    Babin, M.A., Kuznetsov, S.O.: Computing premises of a minimal cover of functional dependencies is intractable. Discrete Appl. Math. 161(6), 742–749 (2013). DOI 10.1016/j.dam.2012.10.026. http://dblp.uni-trier.de/rec/bib/journals/dam/BabinK13 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bazhanov, K., Obiedkov, S.A.: Optimizations in computing the Duquenne-Guigues basis of implications. Ann. Math. Artif. Intell. 70(1–2), 5–24 (2014). DOI 10.1007/s10472-013-9353-y. http://dblp.uni-trier.de/rec/bib/journals/amai/BazhanovO14 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal form relational schemas. ACM Trans. Database Syst. 4(1), 30–59 (1979). DOI 10.1145/320064.320066. http://doi.acm.org/10.1145/320064.320066. http://dblp.uni-trier.de/rec/bib/journals/tods/BeeriB79 CrossRefGoogle Scholar
  10. 10.
    Borchmann, D.: Towards an error-tolerant construction of \(\mathcal{EL}^{\!\perp }\)-ontologies from data using formal concept analysis. In: Cellier, P., Distel, F., Ganter, B. (eds.) Formal Concept Analysis, Proceedings of the 11th International Conference, ICFCA 2013, Dresden, 21–24 May 2013. Lecture Notes in Computer Science, vol. 7880, pp. 60–75. Springer, Heidelberg (2013). DOI 10.1007/978-3-642-38317-5∖_4. http://dblp.uni-trier.de/rec/bib/conf/icfca/Borchmann13
  11. 11.
    Borchmann, D.: Learning terminological knowledge with high confidence from erroneous data. Ph.D. thesis, Dresden University of Technology (2014). http://dblp.uni-trier.de/rec/bib/phd/dnb/Borchmann14
  12. 12.
    Borchmann, D., Distel, F., Kriegel, F.: Axiomatisation of general concept inclusions from finite interpretations. J. Appl. Non-Classical Log. 26(1), 1–46 (2016). DOI 10.1080/11663081.2016.1168230. http://dblp.uni-trier.de/rec/bib/journals/jancl/BorchmannDK16 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002). http://dblp.uni-trier.de/rec/bib/books/daglib/0023601 CrossRefGoogle Scholar
  14. 14.
    Distel, F.: Model-based most specific concepts in description logics with value restrictions. Tech. Rep. 08-04, Institute for theoretical computer science, TU Dresden, Dresden (2008). http://lat.inf.tu-dresden.de/research/reports.html
  15. 15.
    Distel, F.: Hardness of enumerating pseudo-intents in the lectic order. In: Kwuida, L., Sertkaya, B. (eds.) Formal Concept Analysis, Proceedings of the 8th International Conference, ICFCA 2010, Agadir, 15–18 March 2010. Lecture Notes in Computer Science, vol. 5986, pp. 124–137. Springer, Heidelberg (2010). DOI 10.1007/978-3-642-11928-6∖_9. http://dblp.uni-trier.de/rec/bib/conf/icfca/Distel10 CrossRefGoogle Scholar
  16. 16.
    Distel, F.: Learning description logic knowledge bases from data using methods from formal concept analysis. Ph.D. thesis, Dresden University of Technology (2011). http://dblp.uni-trier.de/rec/bib/phd/de/Distel2011
  17. 17.
    Distel, F., Sertkaya, B.: On the complexity of enumerating pseudo-intents. Discrete Appl. Math. 159(6), 450–466 (2011). DOI 10.1016/j.dam.2010.12.004. http://dblp.uni-trier.de/rec/bib/journals/dam/DistelS11 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Donini, F.M., Colucci, S., Noia, T.D., Sciascio, E.D.: A tableaux-based method for computing least common subsumers for expressive description logics. In: Boutilier, C. (ed.) IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 739–745, Pasadena, CA, 11–17 July 2009 (2009). http://dblp.uni-trier.de/rec/bib/conf/ijcai/DoniniCNS09
  19. 19.
    Facebook: Facebook (2016). https://www.facebook.com
  20. 20.
    Facebook for Developers: The Graph API (2016). https://developers.facebook.com/docs/graph-api
  21. 21.
    Ganter, B.: Two Basic Algorithms in Concept Analysis. FB4-Preprint 831, Technische Hochschule Darmstadt, Darmstadt (1984)Google Scholar
  22. 22.
    Ganter, B.: Attribute exploration with background knowledge. Theor. Comput. Sci. 217(2), 215–233 (1999). DOI 10.1016/S0304-3975(98)00271-0. http://dblp.uni-trier.de/rec/bib/journals/tcs/Ganter99 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ganter, B.: Two basic algorithms in concept analysis. In: Kwuida, L., Sertkaya, B. (eds.) Formal Concept Analysis, Proceedings of the 8th International Conference, ICFCA 2010, Agadir, 15–18 March 2010. Lecture Notes in Computer Science, vol. 5986, pp. 312–340. Springer, Heidelberg (2010). DOI 10.1007/978-3-642-11928-6∖_22. http://dblp2.uni-trier.de/rec/bib/conf/icfca/Ganter10 CrossRefGoogle Scholar
  24. 24.
    Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations. Springer, Heidelberg (1999). http://dblp.uni-trier.de/rec/bib/books/daglib/0095956 CrossRefGoogle Scholar
  25. 25.
    Guigues, J.L., Duquenne, V.: Famille minimale d’implications informatives résultant d’un tableau de données binaires. Math. Sci. Hum. 95, 5–18 (1986)Google Scholar
  26. 26.
    Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman and Hall/CRC Press, Boca Raton (2010). http://dblp.uni-trier.de/rec/bib/books/crc/Hitzler2010 Google Scholar
  27. 27.
    Kriegel, F.: Concept Explorer FX (2010–2017). Software for Formal Concept Analysis with Description Logic Extensions. https://github.com/francesco-kriegel/conexp-fx
  28. 28.
    Kriegel, F.: NextClosures – parallel exploration of constrained closure operators. LTCS-Report 15–01, Chair for Automata Theory, Technische Universität Dresden (2015). http://lat.inf.tu-dresden.de/research/reports.html
  29. 29.
    Kriegel, F.: Axiomatization of general concept inclusions from streams of interpretations with optional error tolerance. In: Kuznetsov, S.O., Napoli, A., Rudolph, S. (eds.) Proceedings of the 5th International Workshop “What can FCA do for Artificial Intelligence”? Co-located with the European Conference on Artificial Intelligence, FCA4AI@ECAI 2016, The Hague, 30 August 2016. CEUR Workshop Proceedings, vol. 1703, pp. 9–16. CEUR-WS.org (2016). http://dblp.uni-trier.de/rec/bib/conf/ecai/Kriegel16
  30. 30.
    Kriegel, F.: NextClosures with constraints. In: Huchard, M., Kuznetsov, S.O. (eds.) Proceedings of the Thirteenth International Conference on Concept Lattices and Their Applications, Moscow, 18–22 July 2016. CEUR Workshop Proceedings, vol. 1624, pp. 231–243. CEUR-WS.org (2016). http://dblp2.uni-trier.de/rec/bib/conf/cla/Kriegel16
  31. 31.
    Kriegel, F.: Parallel attribute exploration. In: Haemmerlé, O., Stapleton, G., Faron-Zucker, C. (eds.) Graph-Based Representation and Reasoning - Proceedings of the 22nd International Conference on Conceptual Structures, ICCS 2016, Annecy, 5–7 July 2016. Lecture Notes in Computer Science, vol. 9717, pp. 91–106. Springer, Heidelberg (2016). DOI 10.1007/978-3-319-40985-6∖_8. http://dblp2.uni-trier.de/rec/bib/conf/iccs/Kriegel16 CrossRefGoogle Scholar
  32. 32.
    Kriegel, F., Borchmann, D.: NextClosures: parallel computation of the canonical base. In: Ben Yahia, S., Konecny, J. (eds.) Proceedings of the Twelfth International Conference on Concept Lattices and Their Applications, Clermont-Ferrand, 13–16 October 2015. CEUR Workshop Proceedings, vol. 1466, pp. 181–192. CEUR-WS.org (2015). http://dblp.uni-trier.de/rec/bib/conf/cla/KriegelB15
  33. 33.
    Küsters, R., Molitor, R.: Computing least common subsumers in ALEN. In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001, pp. 219–224, Seattle, WA, 4–10 August 2001. Morgan Kaufmann, San Francisco (2001). http://dblp.uni-trier.de/rec/bib/conf/ijcai/KustersM01 Google Scholar
  34. 34.
    Kuznetsov, S.O.: On computing the size of a lattice and related decision problems. Order 18(4), 313–321 (2001). DOI 10.1023/A:1013970520933. http://dblp.uni-trier.de/rec/bib/journals/order/Kuznetsov01 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kuznetsov, S.O.: On the intractability of computing the Duquenne-Guigues base. J. UCS 10(8), 927–933 (2004). DOI 10.3217/jucs-010-08-0927. http://dblp.uni-trier.de/rec/bib/journals/jucs/Kuznetsov04 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Kuznetsov, S.O., Obiedkov, S.A.: Counting pseudo-intents and #p-completeness. In: Missaoui, R., Schmid, J. (eds.) Formal Concept Analysis, Proceedings of the 4th International Conference, ICFCA 2006, Dresden, 13–17 February 2006. Lecture Notes in Computer Science, vol. 3874, pp. 306–308. Springer, Heidelberg (2006). DOI 10.1007/11671404∖_21. http://dblp.uni-trier.de/rec/bib/conf/icfca/KuznetsovO06 CrossRefGoogle Scholar
  37. 37.
    Kuznetsov, S.O., Obiedkov, S.A.: Some decision and counting problems of the Duquenne-Guigues basis of implications. Discrete Appl. Math. 156(11), 1994–2003 (2008). DOI 10.1016/j.dam.2007.04.014. http://dblp.uni-trier.de/rec/bib/journals/dam/KuznetsovO08 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5, 2nd edn. Springer, New York (1978). DOI 10.1007/978-1-4757-4721-8∖_1. http://dx.doi.org/10.1007/978-1-4757-4721-8_1 CrossRefGoogle Scholar
  39. 39.
    Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville (1983). http://dblp.uni-trier.de/rec/bib/books/cs/Maier83 zbMATHGoogle Scholar
  40. 40.
    Mantay, T.: Computing least common subsumers in expressive description logics. In: Foo, N.Y. (ed.) Advanced Topics in Artificial Intelligence, Proceedings of the 12th Australian Joint Conference on Artificial Intelligence, AI ’99, Sydney, 6–10 December 1999. Lecture Notes in Computer Science, vol. 1747, pp. 218–230. Springer, Heidelberg (1999). DOI 10.1007/3-540-46695-9∖_19. http://dblp.uni-trier.de/rec/bib/conf/ausai/Mantay99 CrossRefGoogle Scholar
  41. 41.
    Mantay, T.: A least common subsumer operation for an expressive description logic. In: Loganantharaj, R., Palm, G. (eds.) Intelligent Problem Solving, Methodologies and Approaches, Proceedings of the 13th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2000, New Orleans, LA, 19–22 June 2000. Lecture Notes in Computer Science, vol. 1821, pp. 474–481. Springer, Heidelberg (2000). DOI 10.1007/3-540-45049-1∖_57. http://dblp.uni-trier.de/rec/bib/conf/ieaaie/Mantay00
  42. 42.
    Obiedkov, S.A., Duquenne, V.: Attribute-incremental construction of the canonical implication basis. Ann. Math. Artif. Intell. 49(1–4), 77–99 (2007). DOI 10.1007/s10472-007-9057-2. http://dblp.uni-trier.de/rec/bib/journals/amai/ObiedkovD07 MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Sertkaya, B.: Some computational problems related to pseudo-intents. In: Ferré, S., Rudolph, S. (eds.) Formal Concept Analysis, Proceedings of the 7th International Conference, ICFCA 2009, Darmstadt, 21–24 May 2009. Lecture Notes in Computer Science, vol. 5548, pp. 130–145. Springer, Heidelberg (2009). DOI 10.1007/978-3-642-01815-2∖_11. http://dblp.uni-trier.de/rec/bib/conf/icfca/Sertkaya09 CrossRefGoogle Scholar
  44. 44.
    Sertkaya, B.: Towards the complexity of recognizing pseudo-intents. In: Rudolph, S., Dau, F., Kuznetsov, S.O. (eds.) Conceptual Structures: Leveraging Semantic Technologies, Proceedings of the 17th International Conference on Conceptual Structures, ICCS 2009, Moscow, 26–31 July 2009. Lecture Notes in Computer Science, vol. 5662, pp. 284–292. Springer, Heidelberg (2009). DOI 10.1007/978-3-642-03079-6∖_22. http://dblp.uni-trier.de/rec/bib/conf/iccs/Sertkaya09 CrossRefGoogle Scholar
  45. 45.
    Stumme, G.: Attribute exploration with background implications and exceptions. In: Studies in Classification, Data Analysis, and Knowledge Organization, pp. 457–469. Springer, Berlin/Heidelberg (1996). DOI 10.1016/S0304-3975(98)00271-0. http://dblp.uni-trier.de/rec/bib/journals/tcs/Ganter99 CrossRefGoogle Scholar
  46. 46.
    (W3C), W.W.W.C.: Owl 2 web ontology language document overview, 2nd edn. (2012). https://www.w3.org/TR/owl2-overview/
  47. 47.
    Wild, M.: Computations with finite closure systems and implications. In: Du, D., Li, M. (eds.) Computing and Combinatorics, Proceedings of the First Annual International Conference, COCOON ’95, Xi’an, 24–26 August 1995. Lecture Notes in Computer Science, vol. 959, pp. 111–120. Springer, Heidelberg (1995). DOI 10.1007/BFb0030825. http://dx.doi.org/10.1007/BFb0030825. http://dblp.uni-trier.de/rec/bib/conf/cocoon/Wild95 Google Scholar
  48. 48.
    Wille, R.: Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts, pp. 445–470. Springer, Dordrecht (1982). DOI 10.1007/978-94-009-7798-3∖_15. http://dx.doi.org/10.1007/978-94-009-7798-3_15 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Theoretical Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations