Descriptive Community Detection

  • Martin AtzmuellerEmail author
Part of the Lecture Notes in Social Networks book series (LNSN)


Subgroup discovery and community detection are standard approaches for identifying (cohesive) subgroups. This paper presents an organized picture of recent research in descriptive community (and subgroup) detection. Here, it summarizes approaches for the identification of descriptive patterns targeting both static and dynamic (sequential) relations. We specifically focus on attributed graphs, i.e.,complex relational graphs that are annotated with additional information. This relates to attribute information, for example, assigned to the nodes and/or edges of the graph. Combining subgroup discovery and community detection, we also summarize an efficient and effective approach for descriptive community detection.


Community detection Subgroup discovery Attributed graphs 


  1. 1.
    Adnan, M., Alhajj, R., Rokne, J.: Identifying social communities by frequent pattern mining. In: Proc. 13th Intl. Conf. Information Visualisation, pp. 413–418. IEEE Computer Society, Washington, DC (2009)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proc. 20th Int. Conf. Very Large Data Bases (VLDB), pp. 487–499. Morgan Kaufmann, San Francisco (1994)Google Scholar
  3. 3.
    Agresti, A.: An Introduction to Categorical Data Analysis. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  4. 4.
    Atzmueller, M.: Data mining on social interaction networks. J. Data Min. Digit. Humanit. 1, pp. 1–34 (2014)Google Scholar
  5. 5.
    Atzmueller, M.: Subgroup and community analytics on attributed graphs. In: Kuznetsov, S.O., Missaoui, R., Obiedkov, S. (eds.) Proceedings of the International Workshop on Social Network Analysis Using Formal Concept Analysis (SNAFCA-2015), CEUR-WS, vol. 1534 (2015)Google Scholar
  6. 6.
    Atzmueller, M.: Subgroup discovery – advanced review. WIREs Data Min. Knowl. Discov. 5(1), 35–49 (2015)CrossRefGoogle Scholar
  7. 7.
    Atzmueller, M.: Detecting community patterns capturing exceptional link trails. In: Proceedings of the IEEE/ACM ASONAM. IEEE Press, Boston, MA (2016)CrossRefGoogle Scholar
  8. 8.
    Atzmueller, M.: Local exceptionality detection on social interaction networks. In: Proceedings of the ECML-PKDD 2016: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Springer, Berlin (2016)CrossRefGoogle Scholar
  9. 9.
    Atzmueller, M., Lemmerich, F.: Fast subgroup discovery for continuous target concepts. In: Proceedings of the International Symposium on Methodologies for Intelligent Systems. LNCS, vol. 5722, pp. 1–15. Springer, Heidelberg (2009)Google Scholar
  10. 10.
    Atzmueller, M., Lemmerich, F.: VIKAMINE - open-source subgroup discovery, pattern mining, and analytics. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Atzmueller, M., Lemmerich, F.: Exploratory pattern mining on social media using geo-references and social tagging information. Int. J. Web Sci. 2(1/2), 80–112 (2013)CrossRefGoogle Scholar
  12. 12.
    Atzmueller, M., Mitzlaff, F.: Efficient descriptive community mining. In: Proceedings of the 24th International FLAIRS Conference, pp. 459–464. AAAI Press, Palo Alto, CA (2011)Google Scholar
  13. 13.
    Atzmueller, M., Puppe, F.: Semi-automatic visual subgroup mining using VIKAMINE. J. Univers. Comput. Sci. 11(11), 1752–1765 (2005)Google Scholar
  14. 14.
    Atzmueller, M., Puppe, F.: SD-Map - a fast algorithm for exhaustive subgroup discovery. In: Proceedings of the European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), pp. 6–17. Springer, Heidelberg (2006)Google Scholar
  15. 15.
    Atzmueller, M., Puppe, F.: A case-based approach for characterization and analysis of subgroup patterns. J. Appl. Intell. 28(3), 210–221 (2008)CrossRefGoogle Scholar
  16. 16.
    Atzmueller, M., Roth-Berghofer, T.: The mining and analysis continuum of explaining uncovered. In: Proceedings of the 30th SGAI International Conference on Artificial Intelligence (AI-2010) (2010)Google Scholar
  17. 17.
    Atzmueller, M., Baumeister, J., Hemsing, A., Richter, E.J., Puppe, F.: Subgroup mining for interactive knowledge refinement. In: Proceedings of the 10th Conference on Artificial Intelligence in Medicine (AIME 05). LNAI, vol. 3581, pp. 453–462. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Atzmueller, M., Baumeister, J., Puppe, F.: Introspective subgroup analysis for interactive knowledge refinement. In: Proceedings of the 19th International Florida Artificial Intelligence Research Society Conference 2006 (FLAIRS-2006), pp. 402–407. AAAI Press, Palo Alto, CA (2006)Google Scholar
  19. 19.
    Atzmueller, M., Becker, M., Kibanov, M., Scholz, C., Doerfel, S., Hotho, A., Macek, B.E., Mitzlaff, F., Mueller, J., Stumme, G.: Ubicon and its applications for ubiquitous social computing. New Rev. Hypermedia Multimed. 20(1), 53–77 (2014)CrossRefGoogle Scholar
  20. 20.
    Atzmueller, M., Mueller, J., Becker, M.: Exploratory subgroup analytics on ubiquitous data. In: Mining, Modeling and Recommending ‘Things’ in Social Media. LNAI, vol. 8940. Springer, Heidelberg (2015)Google Scholar
  21. 21.
    Atzmueller, M., Doerfel, S., Mitzlaff, F.: Description-oriented community detection using exhaustive subgroup discovery. Inf. Sci. 329, 965–984 (2016)CrossRefGoogle Scholar
  22. 22.
    Atzmueller, M., Mollenhauer, D., Schmidt, A.: Big data analytics using local exceptionality detection. In: Enterprise Big Data Engineering, Analytics, and Management. IGI Global, Hershey, PA (2016)CrossRefGoogle Scholar
  23. 23.
    Atzmueller, M., Schmidt, A., Kibanov, M.: DASHTrails: an approach for modeling and analysis of distribution-adapted sequential hypotheses and trails. In: Proceedings of the WWW 2016 (Companion), IW3C2/ACM (2016)CrossRefGoogle Scholar
  24. 24.
    Atzmueller, M., Schmidt, A., Kloepper, B., Arnu, D.: HypGraphs: an approach for modeling and comparing graph-based and sequential hypotheses. In: Proceedings of the ECML-PKDD Workshop on New Frontiers in Mining Complex Patterns (NFMCP), Riva del Garda (2016)Google Scholar
  25. 25.
    Clancey, W.J.: The epistemology of a rule-based expert system: a framework for explanation. Artif. Intell. 20, 215–251 (1983)CrossRefGoogle Scholar
  26. 26.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Freeman, L.: Segregation in social networks. Sociol. Methods Res. 6(4), 411 (1978)CrossRefGoogle Scholar
  28. 28.
    Galbrun, E., Gionis, A., Tatti, N.: Overlapping community detection in labeled graphs. Data Min. Knowl. Discov. 28(5–6), 1586–1610 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38(3), Article No. 9 (2006)CrossRefGoogle Scholar
  30. 30.
    Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12, 103018 (2010)CrossRefGoogle Scholar
  31. 31.
    Grosskreutz, H., Rüping, S., Wrobel, S.: Tight optimistic estimates for fast subgroup discovery. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. LNCS, vol. 5211, pp. 440–456. Springer, Heidelberg (2008)Google Scholar
  32. 32.
    Günnemann, S., Färber, I., Boden, B., Seidl, T.: GAMer: a synthesis of subspace clustering and dense subgraph mining. In: Knowledge and Information Systems. Springer, London (2013)Google Scholar
  33. 33.
    Kibanov, M., Atzmueller, M., Scholz, C., Stumme, G.: Temporal evolution of contacts and communities in networks of face-to-face human interactions. Sci. China 57, 1–17 (2014)Google Scholar
  34. 34.
    Kibanov, M., Atzmueller, M., Illig, J., Scholz, C., Barrat, A., Cattuto, C., Stumme, G.: Is web content a good proxy for real-life interaction? A case study considering online and offline interactions of computer scientists. In: Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE Press, Boston, MA (2015)Google Scholar
  35. 35.
    Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 249–271. AAAI Press, Menlo Park (1996)Google Scholar
  36. 36.
    Klösgen, W.: 16.3: subgroup discovery. In: Handbook of Data Mining and Knowledge Discovery. Oxford University Press, New York (2002)Google Scholar
  37. 37.
    Klösgen, W.: 5.2: subgroup patterns. In: Handbook of Data Mining and Knowledge Discovery. Oxford University Press, New York (2002)Google Scholar
  38. 38.
    Koyuturk, M., Szpankowski, W., Grama, A.: Assessing significance of connectivity and conservation in protein interaction networks. J. Comput. Biol. 14(6), 747–764 (2007)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Krackhardt, D.: QAP partialling as a test of spuriousness. Soc. Netw. 9, 171–186 (1987)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Lancichinetti, A., Fortunato, S., Kertsz, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3), 033015 (2009)CrossRefGoogle Scholar
  41. 41.
    Leman, D., Feelders, A., Knobbe, A.: Exceptional model mining. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Lecture Notes in Computer Science, vol. 5212, pp. 1–16. Springer, Heidelberg (2008)Google Scholar
  42. 42.
    Lemmerich, F., Becker, M., Atzmueller, M.: Generic pattern trees for exhaustive exceptional model mining. In: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  43. 43.
    Lemmerich, F., Atzmueller, M., Puppe, F.: Fast exhaustive subgroup discovery with numerical target concepts. Data Min. Knowl. Discov. 30, 711–762 (2016)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Lempel, R., Moran, S.: The stochastic approach for link-structure analysis (SALSA) and the TKC effect. Comput. Netw. 33(1), 387–401 (2000)CrossRefGoogle Scholar
  45. 45.
    Lin, Y.R., Chi, Y., Zhu, S., Sundaram, H., Tseng, B.L.: Analyzing communities and their evolutions in dynamic social networks. ACM Trans. Knowl. Discov. Data 3, 8:1–8:31 (2009)CrossRefGoogle Scholar
  46. 46.
    McDaid, A., Hurley, N.: Detecting highly overlapping communities with model-based overlapping seed expansion. In: Proceedings of the International Conference on Advances in Social Networks Analysis and Mining, ASONAM, pp. 112–119. IEEE Computer Society, Washington, DC (2010)Google Scholar
  47. 47.
    Mitzlaff, F., Atzmueller, M., Stumme, G., Hotho, A.: Semantics of user interaction in social media. In: Ghoshal, G., Poncela-Casasnovas, J., Tolksdorf, R. (eds.) Complex Networks IV. Studies in Computational Intelligence, vol. 476. Springer, Heidelberg (2013)Google Scholar
  48. 48.
    Mitzlaff, F., Atzmueller, M., Hotho, A., Stumme, G.: The social distributional hypothesis. J. Soc. Netw. Anal. Min. 4, 216 (2014)CrossRefGoogle Scholar
  49. 49.
    Moser, F., Colak, R., Rafiey, A., Ester, M.: Mining cohesive patterns from graphs with feature vectors. In: SDM, SIAM, vol. 9, pp. 593–604 (2009)Google Scholar
  50. 50.
    Muff, S., Rao, F., Caflisch, A.: Local modularity measure for network clusterizations. Phys. Rev. E Stat. Nonlinear Matter Phys. 72(5), 056107 (2005)CrossRefGoogle Scholar
  51. 51.
    Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. 38, 321–330 (2004)CrossRefGoogle Scholar
  52. 52.
    Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  53. 53.
    Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E Stat. Nonlin Soft Matter Phys. 69(2), 1–15 (2004)CrossRefGoogle Scholar
  54. 54.
    Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition of modularity to directed graphs with overlapping communities. J. Stat. Mech. 2009, 03024 (2009)Google Scholar
  55. 55.
    Palla, G., Dernyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)CrossRefGoogle Scholar
  56. 56.
    Palla, G., Farkas, I.J., Pollner, P., Derenyi, I., Vicsek, T.: Directed network modules. New J. Phys. 9(6), 186 (2007)CrossRefGoogle Scholar
  57. 57.
    Pool, S., Bonchi, F., van Leeuwen, M.: Description-driven community detection. Trans. Intell. Syst. Technol. 5(2), 1–21 (2014)CrossRefGoogle Scholar
  58. 58.
    Raghavan, U., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007)CrossRefGoogle Scholar
  59. 59.
    Roth-Berghofer, T.R., Cassens, J.: Mapping goals and kinds of explanations to the knowledge containers of case-based reasoning systems. In: Muñoz-Avila, H., Ricci, F. (eds.) Case-Based Reasoning Research and Development, 6th International Conference on Case-Based Reasoning, ICCBR 2005, Chicago, IL, USA, August 2005, Proceedings. Lecture Notes in Artificial Intelligence, vol. 3620, pp. 451–464. Springer, Heidelberg (2005)Google Scholar
  60. 60.
    Scholz, C., Atzmueller, M., Stumme, G.: On the predictability of human contacts: influence factors and the strength of stronger ties. In: Proceedings of the 4th ASE/IEEE International Conference on Social Computing (SocialCom). IEEE Computer Society, Boston, MA (2012)Google Scholar
  61. 61.
    Scholz, C., Atzmueller, M., Barrat, A., Cattuto, C., Stumme, G.: New Insights and Methods For Predicting Face-To-Face Contacts. In: Kiciman E, Ellison NB, Hogan B, Resnick P, Soboroff I (eds) Proc. International AAAI Conference on Weblogs and Social Media. AAAI Press, Palo Alto, CA (2013)Google Scholar
  62. 62.
    Scholz, C., Atzmueller, M., Kibanov, M., Stumme, G.: How do people link? Analysis of contact structures in human face-to-face proximity networks. In: Proc. ASONAM 2013. ACM Press, New York, NY (2013)Google Scholar
  63. 63.
    Sese, J., Seki, M., Fukuzaki, M.: Mining networks with shared items. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 1681–1684. ACM, New York, NY (2010)Google Scholar
  64. 64.
    Silva, A., Meira Jr., W., Zaki, M.J.: Mining attribute-structure correlated patterns in large attributed graphs. Proc VLDB Endowment 5(5), 466–477 (2012)CrossRefGoogle Scholar
  65. 65.
    Singer, P., Helic, D., Taraghi, B., Strohmaier, M.: Detecting memory and structure in human navigation patterns using Markov chain models of varying order. PLoS One 9(7), e102070 (2014)CrossRefGoogle Scholar
  66. 66.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences, vol. 8, 1st edn. Cambridge University Press, Cambridge (1994)Google Scholar
  67. 67.
    Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Proceedings of the 1st European Symposium on Principles of Data Mining and Knowledge Discovery, pp. 78–87. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  68. 68.
    Xie, J., Szymanski, B.K.: LabelRank: a stabilized label propagation algorithm for community detection in networks. In: Proceedings of the IEEE Network Science Workshop, West Point, NY (2013)Google Scholar
  69. 69.
    Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. 45(4), 43:1–43:35 (2013)CrossRefGoogle Scholar
  70. 70.
    Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth. In: Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, MDS ’12, pp. 3:1–3:8. ACM, New York, NY (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Tilburg Center for Cognition and Communication (TiCC)Tilburg UniversityTilburgNetherlands
  2. 2.Research Center for Information System Design (ITeG)University of KasselKasselGermany

Personalised recommendations