Architectural Modeling and Analysis for Safety Engineering

  • Danielle StewartEmail author
  • Michael W. Whalen
  • Darren Cofer
  • Mats P. E. Heimdahl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10437)


Architecture description languages such as AADL allow systems engineers to specify the structure of system architectures and perform several analyses over them, including schedulability, resource analysis, and information flow. In addition, they permit system-level requirements to be specified and analyzed early in the development process of airborne and ground-based systems. These tools can also be used to perform safety analysis based on the system architecture and initial functional decomposition.

Using AADL-based system architecture modeling and analysis tools as an exemplar, we extend existing analysis methods to support system safety objectives of ARP4754A and ARP4761. This includes extensions to existing modeling languages to better describe failure conditions, interactions, and mitigations, and improvements to compositional reasoning approaches focused on the specific needs of system safety analysis. We develop example systems based on the Wheel Braking System in SAE AIR6110 to evaluate the effectiveness and practicality of our approach.


Model-based systems engineering Fault analysis Safety engineering 



This research was funded by NASA AMASE NNL16AB07T and University of Minnesota College of Science and Engineering Graduate Fellowship.


  1. 1.
    AADL: Predictable Model-Based EngineeringGoogle Scholar
  2. 2.
    AIR 6110: Contiguous Aircraft/System Development Process Example (2011)Google Scholar
  3. 3.
    Backes, J., Cofer, D., Miller, S., Whalen, M.W.: Requirements analysis of a quad-redundant flight control system. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 82–96. Springer, Cham (2015). doi: 10.1007/978-3-319-17524-9_7 Google Scholar
  4. 4.
    Bittner, B., Bozzano, M., Cavada, R., Cimatti, A., Gario, M., Griggio, A., Mattarei, C., Micheli, A., Zampedri, G.: The xSAP Safety Analysis Platform. In: Proceedings of 22nd International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2016), Held as Part of the European Joint Conferences on Theory and Practice of Software (ETAPS 2016), Eindhoven, The Netherlands, 2–8 April 2016, pp. 533–539 (2016)Google Scholar
  5. 5.
    Bozzano, M., Cimatti, A., Pires, A.F., Jones, D., Kimberly, G., Petri, T., Robinson, R., Tonetta, S.: Formal design and safety analysis of AIR6110 wheel brake system. In: Proceedings of 27th International Conference on Computer Aided Verification (CAV 2015), Part I, San Francisco, CA, USA, 18–24 July 2015, pp. 518–535 (2015)Google Scholar
  6. 6.
    Chen, D., Mahmud, N., Walker, M., Feng, L., Lnn, H., Papadopoulos, Y.: Systems modeling with EAST-ADL for fault tree analysis through HiP-HOPS*. IFAC Proc. Vol. 46(22), 91–96 (2013)CrossRefGoogle Scholar
  7. 7.
    Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based embedded system. Sci. Comput. Program. 97, 333–348 (2015)CrossRefGoogle Scholar
  8. 8.
    Cofer, D., Gacek, A., Miller, S., Whalen, M.W., LaValley, B., Sha, L.: Compositional verification of architectural models. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226, pp. 126–140. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28891-3_13 CrossRefGoogle Scholar
  9. 9.
    Delange, J., Feiler, P., Gluch, D.P., Hudak, J.: AADL Fault Modeling, Analysis Within an ARP4761 Safety Assessment. Technical report CMU/SEI-2014-TR-020, Software Engineering InstituteGoogle Scholar
  10. 10.
    Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML. Morgan Kaufman Publisher, San Francisco (2008)Google Scholar
  11. 11.
    Gudemann, M., Ortmeier, F.: A framework for qualitative and quantitative formal model-based safety analysis. In: Proceedings of the 2010 IEEE 12th International Symposium on High-Assurance Systems Engineering, HASE 2010, pp. 132–141. IEEE Computer Society, Washington, D.C. (2010)Google Scholar
  12. 12.
    Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow programming language lustre. Proc. IEEE 79(9), 1305–1320 (1991)CrossRefGoogle Scholar
  13. 13.
    Hnig, P., Lunde, R., Holzapfel, F.: Model based safety analysis with smartIflow. Information 8(1), 7 (2017)CrossRefGoogle Scholar
  14. 14.
    Joshi, A., Heimdahl, M.P.E.: Model-based safety analysis of simulink models using SCADE design verifier. In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFECOMP 2005. LNCS, vol. 3688, pp. 122–135. Springer, Heidelberg (2005). doi: 10.1007/11563228_10 CrossRefGoogle Scholar
  15. 15.
    Joshi, A., Heimdahl, M.P.: Behavioral fault modeling for model-based safety analysis. In: Proceedings of the 10th IEEE High Assurance Systems Engineering Symposium (HASE) (2007)Google Scholar
  16. 16.
    Joshi, A., Miller, S.P., Whalen, M., Heimdahl, M.P.: A proposal for model-based safety analysis. In: Proceedings of 24th Digital Avionics Systems Conference (Awarded Best Paper of Track) (2005)Google Scholar
  17. 17.
    Joshi, A., Whalen, M., Heimdahl, M.P.: Automated Safety Analysis Draft Final Report. Report for NASA Contract NCC-01001 (2005)Google Scholar
  18. 18.
    Larson, B., Hatcliff, J., Fowler, K., Delange, J.: Illustrating the AADL error modeling annex (v.2) using a simple safety-critical medical device. In: Proceedings of the 2013 ACM SIGAda Annual Conference on High Integrity Language Technology (HILT 2013), pp. 65–84. ACM, New York (2013)Google Scholar
  19. 19.
    Lisagor, O., Kelly, T., Niu, R.: Model-based safety assessment: Review of the discipline and its challenges. In: Proceedings of 2011 9th International Conference on Reliability, Maintainability and Safety, pp. 625–632 (2011)Google Scholar
  20. 20.
    MathWorks: The MathWorks Inc., Simulink Product Web Site (2004).
  21. 21.
    Murugesan, A., Whalen, M.W., Rayadurgam, S., Heimdahl, M.P.: Compositional verification of a medical device system. In: ACM International Conference on High Integrity Language Technology (HILT 2013), ACM (2013)Google Scholar
  22. 22.
    Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., Goldman, J., Lee, I.: Model-driven safety analysis of closed-loop medical systems. IEEE Trans. Industr. Inf. pp. 1–12 (2012)Google Scholar
  23. 23.
    Prosvirnova, T., Batteux, M., Brameret, P.-A., Cherfi, A., Friedlhuber, T., Roussel, J.-M., Rauzy, A.: The AltaRica 3.0 project for model-based safety assessment. IFAC Proc. Volum. 46(22), 127–132 (2013)CrossRefGoogle Scholar
  24. 24.
    SAE ARP 4761: Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment (1996)Google Scholar
  25. 25.
    SAE AS 5506B–3: Aadl annex volume 1 (2015)Google Scholar
  26. 26.
    Sokolsky, O., Lee, I., Clarke, D.: Process-algebraic interpretation of AADL models. In: Proceedings of 14th Ada-Europe International Conference on Reliable Software Technologies (Ada-Europe 2009), Brest, France, 8–12 June 2009, pp. 222–236 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Danielle Stewart
    • 1
    Email author
  • Michael W. Whalen
    • 1
  • Darren Cofer
    • 2
  • Mats P. E. Heimdahl
    • 1
  1. 1.Department of Computer Science and EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Advanced Technology CenterRockwell CollinsCedar RapidsUSA

Personalised recommendations