A Flexible Component-Based Robot Control Architecture for Hormonal Modulation of Behaviour and Affect

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10454)

Abstract

In this paper we present the foundations of an architecture that will support the wider context of our work, which is to explore the link between affect, perception and behaviour from an embodied perspective and assess their relevance to Human Robot Interaction (HRI). Our approach builds upon existing affect-based architectures by combining artificial hormones with discrete abstract components that are designed with the explicit consideration of influencing, and being receptive to, the wider affective state of the robot.

References

  1. 1.
    Cañamero, L.: Building emotional artifacts in social worlds: challenges and perspectives. In: Proceedings of 2001 AAAI Fall Symposium in Emotional and Intelligent II: The Tangled Knot of Social Cognition, pp. 22–30 (2001)Google Scholar
  2. 2.
    Cañamero, L.: Emotion understanding from the perspective of autonomous robots research. Neural Netw. 18(4), 445–455 (2005)CrossRefGoogle Scholar
  3. 3.
    Herrera Perez, C., Sanchez Escribano, G., Sanz, R.: The morphofunctional approach to emotion modelling in robotics. Adapt. Behav. 20(5), 388–404 (2012)CrossRefGoogle Scholar
  4. 4.
    Pfeifer, R.: Building “Fungus Eaters”: design principles of autonomous agents. In: Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior SAB 1996 (From Animals to Animats), pp. 3–12 (1996)Google Scholar
  5. 5.
    Wilson, S.: The Animat path to AI. In: From Animals to Animats: Proceedings of the First International Conference on the Simulation of Adaptive Behaviour, vol. 1, pp. 15–21. MIT Press, Cambridge (1991)Google Scholar
  6. 6.
    Damasio, A.R.: The Feeling of What Happens: Body and Emotion in the Making of Consciousness (1999)Google Scholar
  7. 7.
    Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)CrossRefGoogle Scholar
  8. 8.
    Kravitz, E.A.: Hormonal control of behavior: amines as gain-setting elements that bias behavioral output in lobsters. Integr. Comp. Biol. 30(3), 595–608 (1990)Google Scholar
  9. 9.
    Brooks, R.A.: Integrated systems based on behaviors. ACM SIGART Bull. 2(4), 46–50 (1991)CrossRefGoogle Scholar
  10. 10.
    Krichmar, J.L.: A neurorobotic platform to test the influence of neuromodulatory signaling on anxious and curious behavior. Front. Neurorobot. 7, 1–17 (2013)Google Scholar
  11. 11.
    Lowe, R., Kiryazov, K.: Utilizing emotions in autonomous robots: an enactive approach. In: Bosse, T., Broekens, J., Dias, J., Zwaan, J. (eds.) Emotion Modeling. LNCS, vol. 8750, pp. 76–98. Springer, Cham (2014). doi:10.1007/978-3-319-12973-0_5 Google Scholar
  12. 12.
    Cañamero, L., Avila-García, O.: A bottom-up investigation of emotional modulation in competitive scenarios. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 398–409. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74889-2_35 CrossRefGoogle Scholar
  13. 13.
    Lones, J., Lewis, M., Cañamero, L.: From sensorimotor experiences to cognitive development: investigating the influence of experiential diversity on the development of an epigenetic robot. Front. Robot. AI 3 (2016)Google Scholar
  14. 14.
    Lhommet, M., Marsella, S.: Expressing emotion through posture and gesture. In: The Oxford Handbook of Affective Computing (Gratiolet 1865), pp. 273–285 (2015)Google Scholar
  15. 15.
    Beck, A., Canamero, L., Bard, K.A.: Towards an affect space for robots to display emotional body language. In: 19th IEEE International Symposium on Robot and Human Interactive Communication Principe, pp. 464–469 (2010)Google Scholar
  16. 16.
    Gadanho, S.C., Hallam, J.: Robot learning driven by emotions. Adapt. Behav. 9(1), 42–64 (2001)CrossRefMATHGoogle Scholar
  17. 17.
    Levitan, I.B., Kaczmaret, L.K.: The Neuron: Cell and Molecular Biology, 3rd edn. Oxford University Press, Oxford (2002)Google Scholar
  18. 18.
    O’Regan, J.K., Noe, A.: What it is like to see: a sensorimotor theory of perceptual experience. Synthese 129(1), 79–103 (2001)CrossRefGoogle Scholar
  19. 19.
    Derdikman, D., Moser, E.I.: A manifold of spatial maps in the brain. Space Time Number Brain 14(12), 41–57 (2011)CrossRefGoogle Scholar
  20. 20.
    Durier, V., Rivault, C.: Path integration in cockroach larvae, Blattella germanica (L.)(insect: Dictyoptera): direction and distance estimation. Learn. Behav. 27(1), 108–118 (1999)CrossRefGoogle Scholar
  21. 21.
    Dyer, F.C., Dickinson, J.A.: Sun-compass learning in insects: representation in a simple mind. Curr. Dir. Psychol. Sci. 5(3), 67–72 (1996)CrossRefGoogle Scholar
  22. 22.
    Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386–408 (1958)CrossRefGoogle Scholar
  23. 23.
    Cañamero, L.: Modelling motivation and emotions as a basis for intelligent behavior. In: First International Conference on Autonomous Agents (AGENTS 1997), pp. 148–155. ACM, New York (1997)Google Scholar
  24. 24.
    Lewis, M., Canamero, L.: Hedonic quality or reward? A study of basic pleasure in homeostasis and decision making of a motivated autonomous robot. Adapt. Behav. 24(5), 267–291 (2016)CrossRefGoogle Scholar
  25. 25.
    Fellous, J.: The neuromodulatory basis of emotion. Neuroscientist 5(3), 283–294 (1999)CrossRefGoogle Scholar
  26. 26.
    French, R.L.B., Cañamero, L.: Introducing neuromodulation to a braitenberg vehicle. In: 2005 Proceedings of IEEE International Conference on Robotics and Automation, pp. 4188–4193, April 2005Google Scholar
  27. 27.
    Husbands, P.: Evolving robot behaviours with diffusing gas networks. In: Husbands, P., Meyer, J.-A. (eds.) EvoRobots 1998. LNCS, vol. 1468, pp. 71–86. Springer, Heidelberg (1998). doi:10.1007/3-540-64957-3_65 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Embodied Emotion, Cognition and (Inter-) Action Lab, School of Computer ScienceUniversity of HertfordshireHatfield, HertsUK

Personalised recommendations