Predictive Path Modeling Through PLS and Other Component-Based Approaches: Methodological Issues and Performance Evaluation

  • Pasquale Dolce
  • Vincenzo Esposito Vinzi
  • Carlo Lauro


This chapter deals with the predictive use of PLS-PM and related component-based methods in an attempt to contribute to the recent debates on the suitability of PLS-PM for predictive purposes. Appropriate measures and evaluation criteria for the assessment of models in terms of predictive ability are more and more desirable in PLS-PM. The performance of the models can be improved by choosing the appropriate parameter estimation procedure among the different existing ones or by making developments and modifications of the latter. A recent example of this type of work is the non-symmetrical approach for component-based path modeling, which leads to a new method, called non-symmetrical composite-based path modeling. In the composites construction stage, this new method explicitly takes into account the directions of the relationships in the inner model. Results are promising for this new method, especially in terms of predictive relevance.


  1. Apel, H., & Wold, H. (1982). Soft modeling with latent variables in two or more dimensions: PLS estimation and testing for predictive relevance. In K. Jöreskog & H. Wold (Eds.), Systems under indirect observations (Part II) (pp. 209–247). Amsterdam: North-Holland.Google Scholar
  2. Armstrong, J. S. (2001). Combining forecasts. In J. S. Armstrong (Ed.), Principles of forecasting: A handbook for researchers and practitioners (pp. 417–439). New York: Springer.CrossRefGoogle Scholar
  3. Bates, J. M., & Granger, C. W. J. (1969). The combination of forecasts. Operations Research, 20, 451–468. doi:10.2307/3008764.CrossRefGoogle Scholar
  4. Becker, J.-M., Rai, A., & Rigdon, E. E. (2013). Predictive validity and formative measurement in structural equation modeling: embracing practical relevance. In Proceedings of the International Conference on Information Systems (ICIS), Milan.Google Scholar
  5. Bentler, P. M. (2006). EQS 6 structural equation program manual. Encino, CA: Multivariate Software, Inc.Google Scholar
  6. Chin, W. W. (1998). The partial least squares approach for structural equation modeling. In G. Marcoulides (Ed.), Modern methods for business research (pp. 295–336). London: Lawrence Erlbaum Associates.Google Scholar
  7. Chin, W. W. (2010). How to write up and report PLS analyses. In V. E. Vinzi, W. W. Chin, J. Henseler & H. Wang (Eds.), Handbook of partial least squares: Concepts, methods and applications (pp. 83–97, 655–690). New York: Springer.Google Scholar
  8. Dana, J., & Dawes, R. M. (2004). The superiority of simple alternatives to regression for social science predictions. Journal of Educational and Behavioral Statistics, 29(3), 317–331.CrossRefGoogle Scholar
  9. Dijkstra, T. K., & Henseler, J. (2015a). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics and Data Analysis, 81, 10–23. doi:10.1016/j.csda.2014.07.008.CrossRefMathSciNetGoogle Scholar
  10. Dijkstra, T. K., & Henseler, J. (2015b). Consistent partial least squares path modeling. MIS Quarterly, 39(2), 297–316.CrossRefGoogle Scholar
  11. Dolce, P. (2015). Component-based path modeling: Open issues and methodological contributions. Ph.D. Thesis, Università degli Studi di Napoli “Federico II”.Google Scholar
  12. Dolce, P., & Lauro, N. (2015). Comparing maximum likelihood and PLS estimates for structural equation modeling with formative blocks. Quality and Quantity, 49(3), 891–902.CrossRefGoogle Scholar
  13. Dolce, P., Vinzi, V. E., Lauro, C. (2015). Path directions incoherence in PLS path modeling: a prediction-oriented solution. In H. Abdi, et al. (Eds.), The multiple facets of partial least squares methods and related methods. Springer proceedings in mathematics & statistics (pp. 59–70).Google Scholar
  14. Dolce P, Vinzi, V. E., & Lauro, C. (2016, in press). Non-symmetrical component based path modeling.Google Scholar
  15. Evermann, J., & Tate, M. (2012). Comparing the predictive ability of PLS and covariance models. In Proceedings of the International Conference on Information Systems, Orlando, FL (pp. 546–550).Google Scholar
  16. Evermann, J., & Tate, M. (2014). Comparing out-of-sample predictive ability of PLS, covariance, and regression models. In Proceedings of the 35th International Conference on Information Systems (ICIS), Auckland, New Zealand.Google Scholar
  17. Evermann, J., & Tate, M. (2016). Assessing the predictive performance of structural equation model estimators. Journal of Business Research, 69(10), 4565–4582.CrossRefGoogle Scholar
  18. Fornell, C., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4), 440–452.CrossRefGoogle Scholar
  19. Geisser, S. (1975). The predictive sample reuse method with applications. Journal of the American Statistical Association, 70(350), 320–328.CrossRefzbMATHGoogle Scholar
  20. Hair, J. F., Hult, G. T. M, Ringle, C. M., & Sarstedt, M. (2014) A primer on partial least squares structural equation modeling (PLS-SEM). Thousand Oaks, CA: Sage.zbMATHGoogle Scholar
  21. Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., & Thiele, K. O. (2017, in press). Mirror, mirror on the wall: A comparative evaluation of composite-based structural equation modeling methods. Journal of the Academy of Marketing Science.Google Scholar
  22. Hair, J. F., Sarstedt, M., Pieper, T., & Ringle, C. (2012). The use of partial least squares structural equation modeling in strategic management research: A review of past practices and recommendations for future applications. Long Range Planning, 45(5–6), 320–340. doi:10.1016/j.lrp.2012.09.008.CrossRefGoogle Scholar
  23. Hanafi, M. (2007). PLS path modeling: computation of latent variables with the estimation mode B. Computational Statistics, 22, 275–292.CrossRefzbMATHMathSciNetGoogle Scholar
  24. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  25. Henseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos A, et al. (2014). Common beliefs and reality about partial least squares: Comments on Rönkkö & Evermann (2013). Organizational Research Methods, 17(2), 182–209. doi:10.1177/1094428114526928.CrossRefGoogle Scholar
  26. Henseler, J., Hubona, G. S., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2–20.CrossRefGoogle Scholar
  27. Höskuldsson, A. (2009). Modelling procedures for directed network of data blocks. Chemometrics and Intelligent Laboratory Systems 97(1), 3–10.CrossRefGoogle Scholar
  28. Hotelling, H. (1935). The most predictable criterion. Journal of Education & Psychology, 26(2), 139–142.CrossRefGoogle Scholar
  29. Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3–4), 321–377.CrossRefzbMATHGoogle Scholar
  30. Jöreskog, K. (1977). Structural equation models in the social sciences: Specification, estimation and testing. In R. Krishnaiah (Ed.), Applications of statistics (pp. 265–287). Amsterdam: North-Holland.Google Scholar
  31. Krämer, N. (2007). Analysis of high-dimensional data with partial least squares and boosting. PhD Thesis, Technische Universität Berlin.Google Scholar
  32. Lohmöller, J. (1989). Latent variable path modeling with partial least squares. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  33. Makridakis, S., & Hibon, M. (2000), The M3 competition: Results, conclusions and recommendations. International Journal of Forecasting, 16(4), 451–476.CrossRefGoogle Scholar
  34. R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
  35. Rencher, A. (1998). Multivariate statistical inference and applications. Wiley series in probability and statistics. New York: Wiley.Google Scholar
  36. Rigdon, E. E. (2012). Rethinking partial least squares path modeling: In praise of simple methods. Long Range Planning, 45(5–6), 341–358. doi:10.1016/j.lrp.2012.09.010.CrossRefGoogle Scholar
  37. Rigdon, E. E. (2014). Rethinking partial least squares path modeling: Breaking chains and forging ahead. Long Range Planning, 47(3), 161–167. doi:10.1016/j.lrp.2014.02.003.CrossRefMathSciNetGoogle Scholar
  38. Rigdon, E. E. (2016). Choosing fPLSg path modeling as analytical method in European management research: A realist perspective. European Management Journal, 34(6), 598–605.CrossRefMathSciNetGoogle Scholar
  39. Ringle, C., Sarstedt, M., & Straub, D. (2012). A critical look at the use of PLS-SEM in MIS quarterly. MIS Quarterly, 36(1), iii–xiv.Google Scholar
  40. Rönkkö, M., & Evermann, J. (2013). A critical examination of common beliefs about partial least squares path modeling. Organizational Research Methods, 16(3), 425–448.CrossRefGoogle Scholar
  41. Rönkkö, M., Antonakis, J., McIntosh, C., & Edwards, J. R. (2016). Partial least squares path modeling: Time for some serious second thoughts. Journal of Operations Management, 47–48, 9–27.CrossRefGoogle Scholar
  42. Sarstedt, M., Hair, J. F., Ringle, C., Thiele, K., & Gudergan, S. (2016). Estimation issues with PLS and CBSEM: Where the bias lies! Journal of Business Research, 69(10), 3998–4010. Scholar
  43. Sarstedt, M., Ringle, C., Henseler, J., & Hair, J. (2014). On the emancipation of PLS-SEM: A commentary on Rigdon (2012). Long Range Planning, 47(3), 154–160. doi:10.1016/j.lrp.2014.02.007.CrossRefGoogle Scholar
  44. Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289–310.CrossRefzbMATHMathSciNetGoogle Scholar
  45. Shmueli, G., & Koppius, O. R. (2011) Predictive analytics in information systems research. MIS Quarterly, 35(3), 553–572.CrossRefGoogle Scholar
  46. Shmueli, G., Ray, S., Estrada, V. J. M., & Chatla, S. B. (2016). The elephant in the room: Predictive performance of PLS models. Journal of Business Research, 69(10), 4552–4564.CrossRefGoogle Scholar
  47. Stewart, D., & Love, W. (1968). A general canonical correlation index. Psychological Bulletin, 70(3), 160–163.CrossRefGoogle Scholar
  48. Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, 36(2), 111–147.zbMATHMathSciNetGoogle Scholar
  49. Tenenhaus, A., & Tenenhaus, M. (2011). Regularized generalized canonical correlation analysis. Psychometrika, 76(2), 257–284. doi:10.1007/S11336-011-9206-8.CrossRefzbMATHMathSciNetGoogle Scholar
  50. Tenenhaus, M., Vinzi, V. E., Chatelin, M., & Lauro, C. (2005). PLS path modeling. Computational Statistics and Data Analysis, 48(1), 159–205. doi:10.1016/j.csda.2004.03.005.CrossRefzbMATHMathSciNetGoogle Scholar
  51. Van den Wollenberg, A. L. (1977). Redundancy analysis an alternative for canonical correlation analysis. Psychometrika, 42(2), 207–219.CrossRefzbMATHGoogle Scholar
  52. Vinzi, V.E., & Russolillo, G. (2013). Partial least squares algorithms and methods. WIREs Computational Statistics, 5, 1–19CrossRefGoogle Scholar
  53. Vinzi, V.E., Trinchera, L., & Amato, S. (2010). PLS path modeling: Recent developments and open issues for model assessment and improvement. In V. E. Vinzi, W. Chin, J. Henseler & H. Wang (Eds.), Handbook of partial least squares (PLS): Concepts, methods and applications (pp. 47–82). Berlin: Springer.CrossRefGoogle Scholar
  54. Wold, H. (1980). Model construction and evaluation when theoretical knowledge is scarce: theory and application of partial least squares. In J. Kmenta & J. B. Ramsey (Eds.), Evaluation of econometric models (Chap. 3, pp. 47–74). Cambridge, MA: Academic.Google Scholar
  55. Wold, H. (1982). Soft modeling: The basic design and some extensions. In K. Jöreskog & H. Wold (Eds.), Systems under indirect observation: Part II (pp. 1–54). Amsterdam: North-Holland.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pasquale Dolce
    • 1
  • Vincenzo Esposito Vinzi
    • 2
  • Carlo Lauro
    • 3
  1. 1.Oniris, StatSCNantesFrance
  2. 2.ESSEC Business SchoolCergy-PontoiseFrance
  3. 3.University of Naples “Federico II”NaplesItaly

Personalised recommendations