Advertisement

Ordinal Consistent Partial Least Squares

  • Florian Schuberth
  • Gabriele Cantaluppi
Chapter

Abstract

In this chapter, we present a new variance-based estimator called ordinal consistent partial least squares (OrdPLSc). It is a promising combination of consistent partial least squares (PLSc) and ordinal partial least squares (OrdPLS), respectively, which is capable to deal in structural equation models with common factors, composites, and ordinal categorical indicators. Besides providing the theoretical background of OrdPLSc, we present three approaches to obtain constructs scores from OrdPLS and OrdPLSc, which can be used, e.g., in importance-performance matrix analysis. Finally, we show its behavior on an empirical example and provide a practical guidance for the assessment of SEMs with ordinal categorical indicators in the context of OrdPLSc.

Notes

Acknowledgements

Florian Schuberth thanks Prof. Jörg Henseler and Prof. Theo K. Dijkstra for their guidance and inspiring thoughts in the field of PLS. A special thanks goes to his supervisor Prof. Martin Kukuk for having introduced him to the polychoric correlation.

Gabriele Cantaluppi is grateful to Prof. Angelo Zanella for having introduced him to Structural Equation Models and Prof. Giuseppe Boari for his collaboration in fine tuning OrdPLS.

References

  1. Bayol, M.P., de la Foye, A., Tellier, C., & Tenenhaus, M. (2000). Use of PLS path modeling to estimate the European consumer satisfaction index (ECSI) model. Statistica Applicata, 12(3), 361–375.Google Scholar
  2. Beran, R., & Srivastava, M. S. (1985). Bootstrap tests and confidence regions for functions of a covariance matrix. The Annals of Statistics, 13(1), 95–115.CrossRefzbMATHMathSciNetGoogle Scholar
  3. Betzin, J., & Henseler, J. (2005). Looking at the antecedents of perceived switching costs. A PLS path modeling approach with categorical indicators. In Proceedings of the PLS’05 International Symposium, Barcelona.Google Scholar
  4. Bollen, K. A., & Bauldry, S. (2011). Three Cs in measurement models: Causal indicators, composite indicators, and covariates. Psychological Methods, 16(3), 265.CrossRefGoogle Scholar
  5. Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research, 21(2), 205–229. doi:10.1177/0049124192021002004.CrossRefGoogle Scholar
  6. Cantaluppi, G. (2012). A partial least squares algorithm handling ordinal variables also in presence of a small number of categories. arXiv preprint arXiv:12125049.Google Scholar
  7. Cantaluppi, G., & Boari, G. (2016). A partial least squares algorithm handling ordinal variables. In H. Abdi, V. E. Vinzi, G. Russolillo, G. Saporta & L. Trinchera (Eds.), The multiple facets of partial least squares and related methods: PLS, Paris, 2014 (pp. 295–306). Cham: Springer International Publishing.CrossRefGoogle Scholar
  8. Carroll, J. B. (1961). The nature of the data, or how to choose a correlation coefficient. Psychometrika, 26(4), 347–372.CrossRefMathSciNetGoogle Scholar
  9. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–336). London: Lawrence Erlbaum Associates.Google Scholar
  10. Coelho, P. S., & Esteves, S. P. (2007). The choice between a five-point and a ten-point scale in the framework of customer satisfaction measurement. International Journal of Market Research, 49(3), 313–339.Google Scholar
  11. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2013). Applied multiple regression/correlation analysis for the behavioral sciences. New York: Routledge.Google Scholar
  12. Dijkstra, T. K. (1983). Some comments on maximum likelihood and partial least squares methods. Journal of Econometrics, 22(1–2), 67–90.CrossRefzbMATHMathSciNetGoogle Scholar
  13. Dijkstra, T. K. (1985). Latent variables in linear stochastic models: Reflections on “maximum likelihood” and “partial least squares” methods (Vol. 1). Amsterdam: Sociometric Research Foundation.Google Scholar
  14. Dijkstra, T. K. (2010). Latent variables and indices: Herman Wold’s basic design and partial least squares. In V. E. Vinzi, W. W. Chin, J. Henseler & H. Wang (Eds.), Handbook of partial least squares (pp. 23–46). Berlin: Springer.CrossRefGoogle Scholar
  15. Dijkstra, T. K. (2011). Consistent partial least squares estimators for linear and polynomial factor models. Technical Report. Research Gate. doi:10.13140/RG.2.1.3997.0405.Google Scholar
  16. Dijkstra, T. K., & Henseler, J. (2015a). Consistent and asymptotically normal PLS estimators for linear structural equations. Computational Statistics and Data Analysis, 81(1), 10–23. doi:10.1016/j.csda.2014.07.008.Google Scholar
  17. Dijkstra, T. K., & Henseler, J. (2015b). Consistent partial least squares path modeling. MIS Quarterly, 39(2), 297–316.Google Scholar
  18. Dijkstra, T. K., & Schermelleh-Engel, K. (2014). Consistent partial least squares for nonlinear structural equation models. Psychometrika, 79(4), 585–604. doi:10.1007/S11336-013-9370-0.CrossRefzbMATHMathSciNetGoogle Scholar
  19. Drasgow, F. (1986). Polychoric and polyserial correlations. In S. Kotz & N. Johnson (Eds.), The encyclopedia of statistics (Vol. 7, pp. 68–74). New York: Wiley.Google Scholar
  20. Farrell, A. M. (2010). Insufficient discriminant validity: A comment on Bove, Pervan, Beatty, and Shiu (2009). Journal of Business Research, 63(3), 324–327.CrossRefGoogle Scholar
  21. Fornell, C. (1992). A national customer satisfaction barometer: The Swedish experience. The Journal of Marketing, 56(1), 6–21.CrossRefGoogle Scholar
  22. Fornell, C., & Cha, J. (1994). Partial least squares. In R. Bagozzi (Ed.), Advanced methods of marketing research (pp. 52–78). Oxford: Blackwell.Google Scholar
  23. Fornell, C., Johnson, M. D., Anderson, E. W., Cha, J., & Bryant, B. E. (1996). The American customer satisfaction index: Nature, purpose, and findings. The Journal of Marketing, 60(4), 7–18.CrossRefGoogle Scholar
  24. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. doi:10.2307/3151312.CrossRefGoogle Scholar
  25. Gelhard, C., & Von Delft, S. (2016). The role of organizational capabilities in achieving superior sustainability performance. Journal of Business Research, 69(10), 4632–4642 (Early Online Publication).Google Scholar
  26. Gold, A. H., & Arvind Malhotra, A. H. S. (2001). Knowledge management: An organizational capabilities perspective. Journal of Management Information Systems, 18(1), 185–214.CrossRefGoogle Scholar
  27. Hair, J. F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012a). The use of partial least squares structural equation modeling in strategic management research: A review of past practices and recommendations for future applications. Long Range Planning, 45(5), 320–340. doi:10.1016/j.lrp.2012.09.008.Google Scholar
  28. Hair, J. F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012b). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414–433. doi:10.1007/s11747-011-0261-6.Google Scholar
  29. Henseler, J., & Dijkstra, T. K. (2015a). ADANCO 2.0. composite modeling GmbH, Kleve. www.composite-modeling.com.
  30. Henseler, J., Hubona, G., & Ray, P. A. (2016a). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2–20.Google Scholar
  31. Henseler, J., Ringle, C. M., & Sarstedt, M. (2015b). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. doi:10.1007/s11747-014-0403-8.Google Scholar
  32. Henseler, J., Ringle, C. M., & Sarstedt, M. (2016b). Testing measurement invariance of composites using partial least squares. International Marketing Review, 33(3), 405–431. doi:10.1108/IMR-09-2014-0304.Google Scholar
  33. Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods 3(4), 424–453. doi:10.1037/1082-989X.3.4.424.Google Scholar
  34. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. doi:10.1080/10705519909540118.CrossRefGoogle Scholar
  35. Hwang, H., & Takane, Y. (2014). Generalized structured component analysis: A component-based approach to structural equation modeling. Boca Raton: CRC Press.zbMATHGoogle Scholar
  36. Jakobowicz, E., & Derquenne, C. (2007). A modified PLS path modeling algorithm handling reflective categorical variables and a new model building strategy. Computational Statistics and Data Analysis, 51(8), 3666–3678.CrossRefzbMATHMathSciNetGoogle Scholar
  37. Johnson, M. D, Gustafsson, A., Andreassen, T. W, & Lervik, L., & Cha, J. (2001). The evolution and future of national customer satisfaction index models. Journal of Economic Psychology, 22(2), 217–245.Google Scholar
  38. Kettenring, J. R. (1971). Canonical analysis of several sets of variables. Biometrika, 58(3), 433–451.CrossRefzbMATHMathSciNetGoogle Scholar
  39. Ketterlinus, R. D., Bookstein, F. L., Sampson, P. D., & Lamb, M. E. (1989). Partial least squares analysis in developmental psychopathology. Development and Psychopathology, 1(4), 351–371.CrossRefGoogle Scholar
  40. Lee, S. Y., & Poon, W. Y. (1987). Two-step estimation of multivariate polychoric correlation. Communications in Statistics - Theory and Methods, 16(2), 307–320.CrossRefzbMATHMathSciNetGoogle Scholar
  41. Lohmöller, J. B. (1989). Latent variable path modeling with partial least squares. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  42. Maraun, M. D., & Halpin, P. F. (2008). Manifest and latent variates. Measurement: Interdisciplinary Research and Perspectives, 6(1–2). 113–117.Google Scholar
  43. Noonan, R., & Wold, H. (1982). PLS path modeling with indirectly observed variables: A comparison of alternative estimates for the latent variable. In K. G. Jöreskog & H. Wold (Eds.), Systems under indirect observation: Causality, structure, prediction Part II (Chap. 3, pp. 75–94). Amsterdam: North-Holland.Google Scholar
  44. O’Brien, R. M., & Homer, P. (1987). Corrections for coarsely categorized measures: LISREL’s polyserial and polychoric correlations. Quality and Quantity, 21(4), 349–360.MathSciNetGoogle Scholar
  45. Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44(4), 443–460.CrossRefzbMATHMathSciNetGoogle Scholar
  46. Olsson, U., Drasgow, F., & Dorans, N. J. (1982). The polyserial correlation coefficient. Psychometrika, 47(3), 337–347.CrossRefzbMATHMathSciNetGoogle Scholar
  47. Pearson, K. (1900). Mathematical contributions to the theory of evolution. VII. on the correlation of characters not quantitatively measurable. Philosophical Transactions of the Royal Society of London, Series A, 195, 1–405 (Containing Papers of a Mathematical or Physical Character).Google Scholar
  48. Pearson, K. (1913). On the measurement of the influence of “broad categories” on correlation. Biometrika, 9(1/2), 116–139.CrossRefGoogle Scholar
  49. Poon, W. Y., & Lee, S. Y. (1987). Maximum likelihood estimation of multivariate polyserial and polychoric correlation coefficients. Psychometrika, 52(3), 409–430.CrossRefzbMATHMathSciNetGoogle Scholar
  50. Quiroga, A. M. (1992). Studies of the polychoric correlation and other correlation measures for ordinal variables. PhD thesis, Universitatis Upsaliensis.Google Scholar
  51. R Core Team. (2016). R: A language and environment for statistical computing. R foundation for statistical computing, Vienna. https://www.R-project.org/.Google Scholar
  52. Raykov, T. (2004). Behavioral scale reliability and measurement invariance evaluation using latent variable modeling. Behavior Therapy, 35(2), 299–331.CrossRefMathSciNetGoogle Scholar
  53. Revelle, W. (2016). Psych: Procedures for psychological, psychometric, and personality research. Northwestern University, Evanston, IL. http://CRAN.R-project.org/package=psych. R package version 1.6.4.
  54. Rigdon, E. E. (2012). Rethinking partial least squares path modeling: In praise of simple methods. Long Range Planning, 45(5), 341–358. doi:10.1016/j.lrp.2012.09.010.CrossRefGoogle Scholar
  55. Rigdon, E. E. (2016). Choosing PLS path modeling as analytical method in European management research: A realist perspective. European Management Journal, 34(6), 598–605. doi:10.1016/j.emj.2016.05.006.CrossRefMathSciNetGoogle Scholar
  56. Ringle, C. M., Sarstedt, M., & Straub, D. (2012). A critical look at the use of PLS-SEM in MIS Quarterly. MIS Quarterly, 36(1), 3–14.Google Scholar
  57. Rönkkö, M. (2016), matrixpls: Matrix-based partial least squares estimation. https://github.com/mronkko/matrixpls. R package version 1.0.1.
  58. Russolillo, G. (2012). Non-metric partial least squares. Electronic Journal of Statistics, 6, 1641–1669.CrossRefzbMATHMathSciNetGoogle Scholar
  59. Sanchez, G., Trinchera, L., & Russolillo, G. (2015), plspm: Tools for partial least squares path modeling (PLS-PM). https://CRAN.R-project.org/package=plspm. R package version 0.4.7.
  60. Savalei, V. (2011). What to do about zero frequency cells when estimating polychoric correlations. Structural Equation Modeling: A Multidisciplinary Journal, 18(2), 253–273.CrossRefMathSciNetGoogle Scholar
  61. Schneeweiss, H. (1993). Consistency at large in models with latent variables. In K. Haagen, D. J. Bartholomew, M. Deistler (Eds.), Statistical modelling and latent variables (pp. 299–322). Amsterdam: Elsevier.Google Scholar
  62. Schuberth, F., Henseler, J., & Dijkstra, T. K. (2016). Partial least squares path modeling using ordinal categorical indicators. Quality and Quantity, 51, 1–27. doi:10.1007/s11135-016-0401-7.Google Scholar
  63. Shmueli, G., Ray, S., Estrada, J. M. V., & Chatla, S. B. (2016). The elephant in the room: Predictive performance of PLS models. Journal of Business Research, 69(10), 4552–4564.CrossRefGoogle Scholar
  64. Tenenhaus, M. (2008). Component-based structural equation modelling. Total Quality Management, 19(7–8), 871–886. doi:10.1080/14783360802159543.CrossRefGoogle Scholar
  65. Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., & Lauro, C. (2005). PLS path modeling. Computational Statistics and Data Analysis, 48(1), 159–205. doi:10.1016/j.csda.2004.03.005.CrossRefzbMATHMathSciNetGoogle Scholar
  66. Trinchera, L., & Russolillo, G. (2010). On the use of structural equation models and PLS path modeling to build composite indicators. Working Papers 30–2010, Macerata University, Department of Studies on Economic Development (DiSSE).Google Scholar
  67. Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer. http://had.co.nz/ggplot2/book CrossRefzbMATHGoogle Scholar
  68. Wold, H. (1975). Path models with latent variables: The NIPALS approach. In H. Blalock, A. Aganbegian, F. Borodkin, R. Boudon & V. Capecchi (Eds.), Quantitative sociology, international perspectives on mathematical and statistical modeling (Chap 11, pp. 307–357). New York: Academic.Google Scholar
  69. Wold, H. (1982a). Models for knowledge. In J Gani (Ed.), The making of statisticians (pp 189–212). New York: Springer.Google Scholar
  70. Wold, H. (1982b). Soft modeling: The basic design and some extensions. In K. G. Jöreskog & H. Wold (Eds.), Systems under indirect observations, Part II (pp. 1–54). Amsterdam: North-Holland.Google Scholar
  71. Wooldridge, J. (2012). Introductory econometrics: A modern approach. Boston: Cengage Learning.Google Scholar
  72. Wylie, P. B. (1976). Effects of coarse grouping and skewed marginal distributions on the Pearson product moment correlation coefficient. Educational and Psychological Measurement, 36(1), 1–7.CrossRefGoogle Scholar
  73. Yule, G. U. (1900). On the association of attributes in statistics: With illustrations from the material of the childhood society, &c. Philosophical Transactions of the Royal Society of London, Series A 194, 257–319 (Containing Papers of a Mathematical or Physical Character).Google Scholar
  74. Zumbo, B. D., Gadermann, A. M., & Zeisser, C. (2007). Ordinal versions of coefficients alpha and theta for likert rating scales. Journal of Modern Applied Statistical Methods, 6(1), 21–29.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Business Management and EconomicsUniversity of WürzburgWürzburgGermany
  2. 2.Faculty of Economics, Department of Statistical ScienceUniversità Cattolica del Sacro CuoreMilanItaly

Personalised recommendations