Personality, Intellectual Ability, and the Self-Concept of Gifted Children: An Application of PLS-SEM

  • R. Frank FalkEmail author


The latent variable path analysis program LVPLS was based on Herman Wold’s nonlinear iterative partial least squares (NIPALS) approach to theory construction and data analysis. Current developments derived from NIPALS have formed partial least squares structural equation modeling (PLS-SEM). Both serve as appropriate techniques for data analysis under varying conditions. The study described in this chapter uses PLS-SEM to explore the predictive relationships among personality, intellectual ability, and self-concept in a sample of gifted youth. In the model, intellectual ability and introversion accounted for 24% of the variance in self-concept. Calculations and presentation of results are courtesy of Christian M. Ringle and the SmartPLS 3 computer program (


  1. Becker, J.-M., Klein, K., & Wetzel, M. (2012). Hierarchical latent variable models in PLS-SEM: Guidelines for using reflective-formative type models. Long Range Planning, 45, 359–394. doi: 10.1016/j.lrp.2012.10.001.CrossRefGoogle Scholar
  2. Bouchet, N. M., & Falk, R. F. (2001). The relationship among giftedness, gender, and overexcitability. The Gifted Child Quarterly, 45, 260–267.CrossRefGoogle Scholar
  3. Buss, A. H., & Plomin, R. (1984). Temperament: Early developing personality traits. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  4. Chin, W. W. (1998). The partial least squares approach to structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 295–358). London: Erlbaum.Google Scholar
  5. Commons, M. (1985). How novelty produced continuity in cognitive development within a domain and accounts for unequal development across domains. Toronto: Society for Research of Child Development.Google Scholar
  6. Cooley, C. H. (1902). Human nature and the social order. New York: Scribner.Google Scholar
  7. Falk, R. F., & Miller, N. B. (1992). A primer for soft modeling. Akron, OH: University of Akron Press. (Now available on ResearchGate).Google Scholar
  8. Falk, R. F., & Miller, N. B. (1998). The reflective self: A sociological perspective. Roeper Review, 20, 150–152.CrossRefGoogle Scholar
  9. Falk, R. F., & Miller, N. B. (2009). Building firm foundations: Research and assessments. In S. Daniels & M. M. Piechowski (Eds.), Living with intensity: Understanding the sensitivity, excitability, and emotional development in gifted children, adolescents, and adults (pp. 239–259). Scottsdale, AZ: Great Potential Press.Google Scholar
  10. Falk, R. F., & Silverman, L. K. (2016). The overexcitability inventory for parents (OIP-II): 28-item, six-factor version manual, scoring system, and questionnaire. Westminster, CO: Institute for the Study of Advanced Development.Google Scholar
  11. Falk, R. F., Daniels, S., & Silverman, L. K. (2016). Overexcitability questionnaire-two for children: Manual, scoring system, and questionnaire. Westminster, CO: Institute for the Study of Advanced Development.Google Scholar
  12. Flanagan, D. F., & Kaufman, A. S. (2004). Essentials of WISC-IV assessment. Hoboken, NJ: Wiley.Google Scholar
  13. Gallagher, S. A. (2013). Building bridges: Research on gifted children’s personalities from three psychological theories. In C. S. Neville, M. M. Piechowski, & S. S. Tonal (Eds.), Off the charts: Asynchrony and the gifted child (pp. 48–98). Unionville, NY: Royal Fireworks Press.Google Scholar
  14. Gross, C. M., Rinn, A. N., & Jamieson, K. M. (2007). The relationship between gifted adolescents’ overexcitabilities and self-concepts: An analysis of gender and grade level. Roeper Review, 29, 240–248.CrossRefGoogle Scholar
  15. Haenlein, M., & Kaplan, A. M. (2004). A beginner’s guide to partial least squares analysis. Understanding Statistics, 3(4), 283–297. doi: 10.1207/s15328031us0304_4.CrossRefGoogle Scholar
  16. Hair, J. F., Hult, G. T., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Thousand Oaks, CA: Sage.zbMATHGoogle Scholar
  17. Harter, S. (1982). The perceived competence scale for children. Child Development, 53, 87–97. doi: 10.2307/1129640.CrossRefGoogle Scholar
  18. Henseler, J., Hubona, G. S., & Ray, P. A. (2016). Using PLS path modeling in technology research: Updated guidelines. Industrial Management & Data Systems, 116, 1–19.Google Scholar
  19. Helgoe, L. (2013). Introvert power: Why your inner life is your hidden strength. Naperville, IL: Sourcebooks.Google Scholar
  20. Horn, J., & Noll, J. (1994). A system for understanding cognitive capabilities: A theory and the evidence on which it is based. In D. K. Detterman (Ed.), Current topics in human intellectual ability. Theories of intellectual ability (Vol. 4, pp. 151–203). Norwood, NJ: Ablex.Google Scholar
  21. James, W. (1915). Psychology. New York: Holt, Rinehart and Winston.Google Scholar
  22. Jung, C. G. (1971). Personality types. The collected works of G. G. Jung, Bollingen Series XX, Vol. 6. Princeton, NJ: Princeton University Press.Google Scholar
  23. Kuo, C. C., Chang, H. J., Chow, K. H., Chang, Y. P., Lin, Y. H., & Lin, C. P. (2012). Linking psychological traits with physical brain structure: A MRI study of talented and average ability high school students. Bulletin of Educational Psychology, 43(3), 805–832.Google Scholar
  24. Lohmoeller, J. (1989). Latent variable path modeling with partial least squares. New York: Springer.Google Scholar
  25. Mead, G. H. (1934). Mind self and society from the standpoint of a social behaviorist. Chicago: University of Chicago Press.Google Scholar
  26. Mendaglio, S. (Ed.). (2008). Dabrowski’s theory of positive disintegration. Scottsdale, AZ: Great Potential Press.Google Scholar
  27. Olwen Laney, M. (2002). The introvert advantage: How to thrive in an extrovert world. New York: Workman.Google Scholar
  28. Piechowski, M. M. (2014a). The roots of Dabrowski’stheory. Advanced Development, 14, 28–41.Google Scholar
  29. Piechowski, M. M. (2014b). “Mellow out,” they say. If I only could: Intensities and sensitivities of the young and bright. Unionville, NY: Royal Fireworks Press.Google Scholar
  30. Ringle, C. M., Wende, S., & Becker, J. (2015). SmartPLS 3. Bönningstedt: SmartPLS GmbH. Retrieved from Scholar
  31. Rinn, A. N., Mendagilio, S., Rudasill, K. M., & McQueen, K. S. (2010). Examining the relationship between the overexcitabilities and self-concepts of gifted adolescents via multivariate cluster analysis. The Gifted Child Quarterly, 54(1), 3–7.CrossRefGoogle Scholar
  32. Silverman, L. K. (2002). Upside-down brilliance: The visual-spatial learner. Denver, CO: Deleon.Google Scholar
  33. Silverman, L. K. (2011). Introversion/extraversion scale. Westminster, CO: Gifted Development Center. Retrieved from Scholar
  34. Silverman, L. K. (2013). Giftedness 101. New York: Springer.Google Scholar
  35. Tenenhaus, M., EspositoVinzi, V., Chatelin, Y. M., & Lauro, C. (2005). PLS path modeling. Computational Statistics and Data Analysis, 48(1), 159–2005. doi: 10.1016/j.csda.2004.03.005.CrossRefzbMATHMathSciNetGoogle Scholar
  36. Van den Broeck, W., Hofmans, J., Cooremans, S., & Staels, E. (2014). Factorial validity and measurement invariance across intelligence levels and gender of the overexcitabilities questionnaire-II (OEQ-II). Psychological Assessment, 26(1), 55–68. doi: 10.1037/a0034475.CrossRefGoogle Scholar
  37. Wechsler, D. (2003). The WISC-IV technical and interpretive manual. San Antonio, TX: Pearson Assessments.Google Scholar
  38. Wirthwein, L., & Rost, D. H. (2011). Focusing on overexcitabilities: Studies with intellectually gifted and academically talented adults. Personality and Individual Differences, 51, 337–342. doi: 10.1016/j.paid.2011.03.041.CrossRefGoogle Scholar
  39. Wold, H. (1980). Soft modeling: Intermediate between traditional model building and data analysis. Mathematical Statistics, 6, 333–346.zbMATHGoogle Scholar
  40. Zhu, J., Cayton, T., Weiss, L., & Gabel, A. (2008). Wechsler intelligence scale for children (4th ed.). Technical Report #7. Upper Saddle River, NJ: Pearson Education.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute for the Study of Advanced DevelopmentWestminsterUSA

Personalised recommendations