Advertisement

NEO 2016 pp 45-64 | Cite as

Augmenting the LSA Technique to Evaluate Ubicomp Environments

  • Víctor R. López-López
  • Lizbeth Escobedo
  • Leonardo Trujillo
  • Victor H. Díaz-Ramírez
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 731)

Abstract

LSA is a useful user study technique, it is well known and used to design and evaluate Ubicomp systems. The LSA technique enables researchers to collect data, analyze it, and obtain quantitative and statistical results. A key advantage of using LSA is that it is performed in the user’s environment. However, analyzing large amounts of data is considered by some researchers to be a burden and time consuming, prone to human error. In this paper we explore the use of computer vision techniques to automate the data analysis and coding when using LSA. We present a system that uses facial tracking, object recognition and composite correlation filters to detect the Attention behavior of a subject. Our results indicate that computer vision can automate the LSA technique and reduce the burden of coding data manually by the researcher. The findings from this study reveal emergent practices of the use of our proposed system to automate the evaluation of Ubicomp environments.

Notes

Acknowledgements

We thank participants in this work and the availability to use the data for this work. Also the grants SEP-TecNM (México) 5620.15-P and 5621.15-P, CONACYT (México) Basic Science Research Project No. 178323, and the FP7-Marie Curie-IRSES 2013 European Commission program through project ACoBSEC with contract No. 612689. First author was supported by CONACYT doctoral scholarship No. 302532.

References

  1. 1.
    Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2544–2550 (2010)Google Scholar
  2. 2.
    Caro, K.: Exergames for children with motor skills problems. SIGACCESS Access. Comput. 108, 20–26 (2014)CrossRefGoogle Scholar
  3. 3.
    Consolvo, S., Arnstein, L., Franza, B.R.: User study techniques in the design and evaluation of a ubicomp environment. In: Proceedings of the 4th International Conference on Ubiquitous Computing. UbiComp ’02, pp. 73–90. Springer, London (2002)Google Scholar
  4. 4.
    Escobedo, L., Ibarra, C., Hernandez, J., Alvelais, M., Tentori, M.: Smart objects to support the discrimination training of children with autism. Pers. Ubiquit. Comput. 18(6), 1485–1497 (2013)CrossRefGoogle Scholar
  5. 5.
    Escobedo, L., Tentori, M., Quintana, E., Favela, J., Garcia-Rosas, D.: Using augmented reality to help children with autism stay focused. IEEE Pervasive Comput. 13(1), 38–46 (2014)CrossRefGoogle Scholar
  6. 6.
    Gaxiola, L., Díaz-Ramírez, V.H., Tapia, J., Diaz-Ramirez, A., Kober, V.: Robust face tracking with locally-adaptive correlation filtering. In: Bayro-Corrochano, E., Hancock, E. (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. Lecture Notes in Computer Science, vol. 8827, pp. 925–932. Springer International Publishing (2014)Google Scholar
  7. 7.
    Gibbs, G.R.: Computer assisted qualitative data analysis: Nvivo, maxqda, atlas.ti, qdaminer, hyperresearch. In: IfM?s 21st Annual Research Methodology Workshop (2014)Google Scholar
  8. 8.
    Gunter, P.L., Jack, S.L., Shores, R.E., Carrell, D.E., Flowers, J.: Lag sequential analysis as a tool for functional analysis of student disruptive behavior in classrooms 1(3), 138–148 (1993)Google Scholar
  9. 9.
    Hess, R.: Blender Foundations: The Essential Guide to Learning Blender 2.6. Focal Press (2010)Google Scholar
  10. 10.
    Javidi, B., Wang, J.: Design of filters to detect a noisy target in nonoverlapping background noise. J. Opt. Soc. Am. A 11(10), 2604–2612 (1994)CrossRefGoogle Scholar
  11. 11.
    Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)CrossRefGoogle Scholar
  12. 12.
    Kerekes, R.A., Vijaya Kumar, B.V.K.: Selecting a composite correlation filter design: a survey and comparative study. Opt. Eng. 47(6), 067,202–067,202–18 (2008)Google Scholar
  13. 13.
    Klonek, F.E., Lehmann-Willenbrock, N., Kauffeld, S.: Dynamics of resistance to change: a sequential analysis of change agents in action. J. Change Manag. 14(3), 334–360 (2014)CrossRefGoogle Scholar
  14. 14.
    Nowozin, S., Lampert, C.H.: Structured learning and prediction in computer vision. Found. Trends. Comput. Graph. Vis. 6(3–4), 185–365 (2011)zbMATHGoogle Scholar
  15. 15.
    Preece, J., Rogers, Y., Sharp, H.: Beyond Interaction Design: Beyond Human-Computer Interaction. Wiley, New York (2001)Google Scholar
  16. 16.
    Ringland, K.E., Zalapa, R., Neal, M., Escobedo, L., Tentori, M., Hayes, G.R.: Sensorypaint: a multimodal sensory intervention for children with neurodevelopmental disorders. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. UbiComp ’14, pp. 873–884. ACM, New York, NY, USA (2014)Google Scholar
  17. 17.
    Ringland, K.E., Zalapa, R., Neal, M., Escobedo, L., Tentori, M., Hayes, G.R.: Sensorypaint: a natural user interface supporting sensory integration in children with neurodevelopmental disorders. In: CHI ’14 Extended Abstracts on Human Factors in Computing Systems. CHI EA ’14, pp. 1681–1686. ACM, New York, NY, USA (2014)Google Scholar
  18. 18.
    Sanderson, P., Scott, J., Johnston, T., Mainzer, J., Watanabe, L., James, J.: Macshapa and the enterprise of exploratory sequential data analysis (esda). Int. J. Hum.-Comput. Stud. 41(5), 633–681 (1994). doi: 10.1006/ijhc.1994.1077 CrossRefGoogle Scholar
  19. 19.
    Smith, B., Yin, Q., Feiner, S., Nayar, S.: Gaze Locking: Passive Eye Contact Detection for HumanObject Interaction. In: ACM Symposium on User Interface Software and Technology (UIST), pp. 271–280 (2013)Google Scholar
  20. 20.
    Tentori, M., Escobedo, L., Balderas, G.: A smart environment for children with autism. IEEE Pervasive Comput. 14(2), 42–50 (2015)CrossRefGoogle Scholar
  21. 21.
    Viera, A., Garrett, J.: Understanding interobserver agreement: the kappa statistic. Fam. Med. 37(5), 360–363 (2005)Google Scholar
  22. 22.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001, vol. 1, pp. I–511–I–518 (2001)Google Scholar
  23. 23.
    Weiser, M.: Some computer science issues in ubiquitous computing. Commun. ACM 36(7), 75–84 (1993)CrossRefGoogle Scholar
  24. 24.
    Zalapa, R., Tentori, M.: Movement-based and tangible interactions to offer body awareness to children with autism. Ubiquitous Computing and Ambient Intelligence. Context-Awareness and Context-Driven Interaction: 7th International Conference, UCAmI 2013, Carrillo, Costa Rica, December 2-6, 2013, Proceedings, pp. 127–134. Springer International Publishing (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Víctor R. López-López
    • 1
  • Lizbeth Escobedo
    • 2
  • Leonardo Trujillo
    • 3
  • Victor H. Díaz-Ramírez
    • 4
  1. 1.Posgrado en Ciencias de la IngenieríaDepartamento de Ingeniería Eléctrica y ElectrónicaTijuanaMexico
  2. 2.UCSDLa JollaUSA
  3. 3.Instituto Tecnológico de TijuanaTijuanaMexico
  4. 4.CITEDI-IPNTijuanaMexico

Personalised recommendations