Advertisement

NEO 2016 pp 239-262 | Cite as

Coefficients Estimation of MPM Through LSE, ORLS and SLS for RF-PA Modeling and DPD

  • E. Allende-Chávez
  • S. A. Juárez-Cázares
  • J. R. Cárdenas-Valdez
  • Y. Sandoval-Ibarra
  • J. A. Galaviz-Aguilar
  • Leonardo Trujillo
  • J. C. Nuñez-Pérez
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 731)

Abstract

This paper shows and compares three techniques based on the least squared error for the estimation of the constant coefficients of the memory polynomial model used for the modeling of power amplifiers for radio-frequency and for the construction of a pre-distorter. The first technique is the conventional linear regression using the least square error method. The second technique is the order recursive least squares which can be used for exploring the most adequate nonlinearity order and memory depth of the memory polynomial model by comparing subsequent errors. The sequential least squares method is useful when the measurements of a system are coming sample by sample and the parameters of the model should be adjusted on-line. The mathematical background of the three methods is shown; as an experimental validation of this methods they were simulated in Matlab for the measurements of a 10W NPX Power Amplifier based on the transistor CLF1G0060 GaN HEMTs. An NMSE of \(-19.83\) dB was reached for the best model. Also in order to linearize the power amplifier a pre-distorter was constructed through indirect learning architecture achieving a 50 dBm spurious free dynamic range and a 25 dBc reduction in the adjacent power ratio.

Keywords

ILA LSE MPM ORLS Power amplifier SLS 

Notes

Acknowledgements

The authors wish to thank PhD. Patrick Roblin, Professor at Ohio State University, for its support provided through the measuring data. In addition, the authors would like to express their gratitude to the IPN for its financial support by the project SIP-20170588.

References

  1. 1.
    Katz, A., Wood, J., Chokola, D.: The evolution of PA linearization: from classic feedforward and feedback through analog and digital predistortion. IEEE Microw. Mag. 17(2), 32–40 (2016)CrossRefGoogle Scholar
  2. 2.
    Roblin, P., Quindroit, C., Naraharisetti, N., Gheitanchi, S., Fitton, M.: Concurrent linearization: the state of the art for modeling and linearization of multiband power amplifiers. IEEE Microw. Mag. 14(7), 75–91 (2013)CrossRefGoogle Scholar
  3. 3.
    Liu, Y., Huang, C., Quan, X., Roblin, P., Pan, W., Tang, Y.: Novel linearization architecture with limited ADC dynamic range for green power amplifiers. IEEE J. Sel. Areas Commun. 34(12), 3902–3914 (2016)CrossRefGoogle Scholar
  4. 4.
    Nuñez-Pérez, J.C., Cárdenas-Valdez, J.R., Gontrand, C., Reynoso-Hernandez, J.A., Hirata-Flores, F.I., Jauregui-Duran, R., Perez-Pinal, F.J.: Flexible test bed for the behavioural modelling of power amplifiers. COMPEL - Int. J. Comput. Math. Electr. Electron. Eng. 33(1/2), 355–375 (2013)Google Scholar
  5. 5.
    Rahati Belabad, A., Motamedi, S.A., Sharifian, S.: An adaptive digital predistortion for compensating nonlinear distortions in \(\{{\rm RF}\}\) power amplifier with memory effects. Integr. \(\{{\rm VLSI}\}\) J. 57, 184–191 (2017)Google Scholar
  6. 6.
    Roblin, P., Myoung, S.K., Chaillot, D., Kim, Y.G., Fathimulla, A., Strahler, J., Bibyk, S.: Frequency-selective predistortion linearization of RF power amplifiers. IEEE Trans. Microw. Theory Tech. 56(1), 65–76 (2008)CrossRefGoogle Scholar
  7. 7.
    Li, H., Kwon, D.H., Chen, D., Chiu, Y.: A fast digital predistortion algorithm for radio-frequency power amplifier linearization with loop delay compensation. IEEE J. Sel. Top. Signal Process. 3(3), 374–383 (2009)CrossRefGoogle Scholar
  8. 8.
    Nuñez-Pérez, J.C., Cárdenas-Valdez, J.R., Montoya-Villegas, K., Reynoso-Hernandez, J.A., Loo-Yau, J.R., Gontrand, C., Tlelo-Cuautle, E.: FPGA-based test bed for measurement of AM/AM and AM/PM distortion and modeling memory effects in \(\{{\rm RF}\}\) \(\{{\rm PAs}\}\). Integr. \(\{{\rm VLSI}\}\) J. 52, 291–300 (2016)Google Scholar
  9. 9.
    Naraharisetti, N., Roblin, P., Quindroit, C., Rawat, M., Gheitanchi, S.: Quasi-exact inverse PA model for digital predistorter linearization. In: 82nd ARFTG Microwave Measurement Conference, pp. 1–4 (2013)Google Scholar
  10. 10.
    Wu, X., Shi, J., Chen, H.: On the numerical stability of RF power amplifier’s digital predistortion. In: 2009 15th Asia-Pacific Conference on Communications, pp. 430–433 (2009)Google Scholar
  11. 11.
    Dvorak, J., Marsalek, R., Blumenstein, J.: Adaptive-order polynomial methods for power amplifier model estimation. In: 2013 23rd International Conference Radioelektronika (RADIOELEKTRONIKA), pp. 389–392 (2013)Google Scholar
  12. 12.
    Ntoun, R.S.N., Bahoura, M., Park, C.W.: Power amplifier behavioral modeling by neural networks and their implementation on FPGA. In: 2012 IEEE Vehicular Technology Conference (VTC Fall), pp. 1–5 (2012)Google Scholar
  13. 13.
    Zhu, A., Brazil, T.J.: Behavioral modeling of RF power amplifiers based on pruned volterra series. IEEE Microw. Wirel. Compon. Lett. 14(12), 563–565 (2004)CrossRefGoogle Scholar
  14. 14.
    Ku, H., Kenney, J.S.: Behavioral modeling of nonlinear RF power amplifiers considering memory effects. IEEE Trans. Microw. Theory Tech. 51(12), 2495–2504 (2003)Google Scholar
  15. 15.
    Cárdenas Valdez, J.R., Z-Flores, E., Núñez Pérez, J.C., Trujillo, L.: Local Search Approach to Genetic Programming for RF-PAs Modeling Implemented in FPGA, pp. 67–88. Springer International Publishing, Cham (2017)Google Scholar
  16. 16.
    Golovins, E., Ventura, N.: Modified order-recursive least squares estimator for the noisy OFDM channels. In: Fifth Annual Conference on Communication Networks and Services Research (CNSR’07), pp. 93–100 (2007)Google Scholar
  17. 17.
    Wang, Y., Ikeda, K., Nakayama, K.: A numerically stable fast newton-type adaptive filter based on order recursive least squares algorithm. IEEE Trans. Signal Process. 51(9), 2357–2368 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    HongWei, Z., Qiang, S., Wang, G., You, H.: System errors estimation of DOA and TDOA jointed locating system using sequential least squares. In: Proceedings of 2011 IEEE CIE International Conference on Radar, vol. 2, pp. 1025–1028 (2011)Google Scholar
  19. 19.
    Chen, Y., Zhang, D., Lin, Z., Lai, X.: A sequential weighted least squares procedure for design of IIR filters and two-channel IIR filter banks. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1195–1198 (2014)Google Scholar
  20. 20.
    Diniz, P.S.R.: Conventional RLS Adaptive Filter, pp. 209–247. Springer, Boston (2013)CrossRefGoogle Scholar
  21. 21.
    Chani-Cahuana, J., Fager, C., Eriksson, T.: A new variant of the indirect learning architecture for the linearization of power amplifiers. In: 2015 10th European Microwave Integrated Circuits Conference (EuMIC), pp. 444–447 (2015)Google Scholar
  22. 22.
    Amin, S., Zenteno, E., Landin, P.N., Rnnow, D., Isaksson, M., Hndel, P.: Noise impact on the identification of digital predistorter parameters in the indirect learning architecture. In: 2012 Swedish Communication Technologies Workshop (Swe-CTW), pp. 36–39 (2012)Google Scholar
  23. 23.
    Dwivedi, N., Bohara, V.A., Hussein, M.A., Venard, O.: Fixed point digital predistortion system based on indirect learning architecture. In: 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1376–1380 (2014)Google Scholar
  24. 24.
    Chani-Cahuana, J., Landin, P.N., Fager, C., Eriksson, T.: Iterative learning control for RF power amplifier linearization. IEEE Trans. Microw. Theory Tech. 64(9), 2778–2789 (2016)CrossRefGoogle Scholar
  25. 25.
    Paaso, H., Mammela, A.: Comparison of direct learning and indirect learning predistortion architectures. In: 2008 IEEE International Symposium on Wireless Communication Systems, pp. 309–313 (2008)Google Scholar
  26. 26.
    Abd-Elrady, E., Gan, L., Kubin, G.: Direct and indirect learning methods for adaptive predistortion of IIR hammerstein systems. e & i Elektrotechnik und Informationstechnik 125(4), 126–131 (2008)CrossRefGoogle Scholar
  27. 27.
    Halstead, M.H.: Elements of Software Science. Operating and Programming Systems Series. Elsevier Science Inc., New York (1977)MATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • E. Allende-Chávez
    • 1
  • S. A. Juárez-Cázares
    • 2
  • J. R. Cárdenas-Valdez
    • 1
  • Y. Sandoval-Ibarra
    • 1
  • J. A. Galaviz-Aguilar
    • 2
  • Leonardo Trujillo
    • 1
  • J. C. Nuñez-Pérez
    • 2
  1. 1.Tecnológico Nacional de MéxicoInstituto Tecnológico de TijuanaTijuanaMexico
  2. 2.Instituto Politécnico Nacional, CITEDITijuanaMexico

Personalised recommendations