Advertisement

The Production of Filaments and Non-woven Materials: The Design of the Polymer Distributor

  • Christian Leithäuser
  • René PinnauEmail author
Chapter
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 27)

Abstract

We present results from the joint research project ProFil (Stochastic Processes for the Production of Filaments and Non-wovens), which were derived for the optimal design of the polymer distributor. In particular, one is interested in designs which prevent the cooling and degeneration of the polymer due to long occupation times. Since this is directly related to the wall shear stress distribution the questions arise, which wall shear stresses are attainable and how the corresponding design can be computed numerically. Employing the concept of approximate controllability we can answer the first one and characterize the set of attainable wall shear stresses. Further, we present a new numerical approach based on conformal mappings which allows for an optimization in the supremum norm and for an additional incorporation of state constraints. Finally, we show how the real industrial problem is solved by a least-squares optimization using shape gradients.

Notes

Acknowledgements

This work was supported by the German Federal Ministry of Education and Research (BMBF) grant no. 03MS606F and by the German Federation of Industrial Research Associations (AiF) grant no. 17629N.

References

  1. 1.
    Anderson, J., Wendt, J.: Computational Fluid Dynamics, vol. 206. McGraw-Hill, New York (1995)Google Scholar
  2. 2.
    Chenais, D., Zuazua, E.: Controllability of an elliptic equation and its finite difference approximation by the shape of the domain. Numer. Math. 95, 63–99 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Grund, T., Rösch, A.: Optimal control of a linear elliptic equation with a supremum norm functional. Optim. Methods Softw. 15, 299–329 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, vol. 23. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Leithäuser, C.: Controllability of shape-dependent operators and constrained shape optimization for polymer distributors. PhD Thesis, TU Kaiserslautern (2013)Google Scholar
  6. 6.
    Leithäuser, C., Feßler, R.: Characterizing the image space of a shape-dependent operator for a potential flow problem. Appl. Math. Lett. 25(11), 1959–1963 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Leithäuser, C., Gramsch, S., Hietel, D., Wegener, R.: Modellierung und Simulation entlang der gesamten Vliesstoff-Prozesskette. In: Proceedings, vol. 28. Hofer Vliesstofftage (2013)Google Scholar
  8. 8.
    Leithäuser, C., Pinnau, R., Feßler, R.: Approximate controllability of linearized shape-dependent operators for flow problems. ESAIM: Control Optim. Calc. Var. 23(3), 751–771 (2017)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Leithäuser, C., Pinnau, R., Feßler, R.: A numerical approach to shape optimization with state constraints. arXiv:1412.4350 (2014)Google Scholar
  10. 10.
    Mohammadi, B., Pironneau, O.: Shape optimization in fluid mechanics. Annu. Rev. Fluid Mech. 36, 255–279 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984)CrossRefzbMATHGoogle Scholar
  12. 12.
    Quarteroni, A., Rozza, G.: Optimal control and shape optimization of aorto-coronaric bypass anastomoses. Math. Models Methods Appl. Sci. 13, 1801–1824 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Rozza, G.: On optimization, control and shape design of an arterial bypass. Int. J. Numer. Methods Fluids 47, 1411–1419 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Schinzinger, R., Laura, P.: Conformal Mapping: Methods and Applications. Dover Publications, New York (2003)zbMATHGoogle Scholar
  15. 15.
    Simon, J.: Differentiation with respect to the domain in boundary value problems. Numer. Funct. Anal. Optim. 2, 649–687 (1980)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Sokolowski, J., Zolesio, J.: Introduction to Shape Optimization: Shape Sensitivity Analysis, vol. 16. Springer, Berlin (1992)zbMATHGoogle Scholar
  17. 17.
    Vanderbei, R., Shanno, D.: An interior-point algorithm for nonconvex nonlinear programming. Comput. Optim. Appl. 13, 231–252 (1999)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Wegener, R., Marheineke, N., Hietel, D.: Virtuelle Produktion von Filamenten und Vliesstoffen. In: Neunzert, N., Prätzel-Wolters, D. (eds.) Mathematik im Fraunhofer-Institut Problemgetrieben - Modellbezogen - Lösungsorientiert, pp. 105–165. Springer, Berlin (2014)Google Scholar
  19. 19.
    Wloka, J.: Partial Differential Equations. Cambridge University Press, Cambridge (1987)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Fraunhofer ITWMTransport ProcessesKaiserslauternGermany
  2. 2.Department of MathematicsTU KaiserslauternKaiserslauternGermany

Personalised recommendations