Advertisement

Gamma-Probe for Locating the Source of Ionizing Radiation

  • Timur Khabibullin
  • Andrey Starikovskiy
  • Anastasia Tolstaya
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 636)

Abstract

The radionuclide diagnostics unit, described in the article, detects pathological changes of organs and systems of a person. The device is a portable detector of gamma rays that allows to diagnose superficial malignancies using radiopharmaceuticals injected into the body. The gamma probe uses crystal LaBr3:Ce as a scintillator and silicon photomultiplier SiPM as a photodetector. The focus of this paper is the improvement of the amplifier, which originally produced misshapen pulses unsuitable for energy discrimination. Using LTSPICE, a free circuit-modelling program, we performed extensive simulation of both the SiPM and the amplifier. From this work, we determined that high input impedance and unnecessarily high gain were the source of the distortion. Another amplifier better suited to the SiPM parameters was simulated and then prototyped.

Keywords

Gamma-probe Cancer detection Lymph nodes Detector resolution SiPM Amplifier Collimator 

Notes

Acknowledgments

This work was supported by Competitiveness Growth Program of the Federal Autonomous Educational Institution of Higher Professional Education National Research Nuclear University MEPhI (Moscow Engineering Physics Institute).

References

  1. 1.
    Cancer. Fact sheet N°297. World Health Organization (2015). http://www.who.int/mediacentre/factsheets/fs297/en. Accessed Feb 2015
  2. 2.
    Blokhin, N.N., Peterson, B.B.: Clinical oncology, M. (1979)Google Scholar
  3. 3.
    Stewart, B., Wild, C.P. (eds.): World Cancer Report 2014. IARC Nonserial Publication, 630 p. (2014)Google Scholar
  4. 4.
    De Martel, C., Ferlay, J., Franceschi, S., et al.: Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncology 13, 607–615 (2012)CrossRefGoogle Scholar
  5. 5.
    Zubovsky, G.A.: Gammascintigraph, M. (1978)Google Scholar
  6. 6.
    Zedgenidze, G.A. (ed.): Clinical Radiology, vol. 4, Moscow (1985)Google Scholar
  7. 7.
    Gamma Probes. IntraMedical Imaging (2014). http://www.gammaprobe.com/products/gamma-probes
  8. 8.
    Wengenmair, H., Kopp, J.: Gamma probes for sentinel lymph node localization: quality criteria, minimal requirements and quality of commercially available systems (2005). http://www.klinikum-augsburg.de/index.php/fuseaction/download/lrn_file/gammaprobes.pdf
  9. 9.
    Da Costa, F.E., Rela, P.R., de Oliveira, I.B., Pereira, M.C.C., Hamada, M.M.: Surgical gamma probe with TlBr semiconductor for identification of sentinel lymph node. In: IEEE Nuclear Science Symposium Conference Record, pp. 2890–2894 (2005)Google Scholar
  10. 10.
    Wei, L., Chen, F., Zhang, X., Li, D., Yao, Z., Deng, L., Xiao, G.: 99mTc-dextran lymphoscintigraphy can detect sentinel lymph node in breast cancer patients. Exp. Therap. Med. 9(1), 112–116 (2015)CrossRefGoogle Scholar
  11. 11.
    Bogliolo, S., Marchiole, P., Sala, P., Giardina, E., Villa, G., Fulcheri, E., Menada, M.V.: Sentinel node mapping with radiotracer alone in vulvar cancer: a five year single-centre experience and literature review. Eur. J. Gynaecol. Oncol. 36(1), 10–15 (2015)Google Scholar
  12. 12.
    Endo, K., Ueno, T., Tsuji, A., Kondo, S., Wakisaka, N., Murono, S., Yoshizaki, T.: Sentinel node biopsy and tumor-targeted chemotherapy for oral squamous cell carcinoma. Oto-Rhino-Laryngol. Tokyo 56(5), 329–331 (2014)Google Scholar
  13. 13.
    Matheoud, R., Giorgione, R., Valzano, S., Sacchetti, G., Colombo, E., Brambilla, M.: Minimum acceptable sensitivity of intraoperative gamma probes used for sentinel lymph node detection in melanoma patients. Physica Med. 30(7), 822–826 (2014)CrossRefGoogle Scholar
  14. 14.
    Grigorenko, A., Panfilov, L., Smirnov, A., Starikovskiy, A., Rubin, D., Shulga, E., Sychev, N., Nikolaeva, A.: The existing gamma-probes review for searching functional increase and complex improvement possibilities. Biosci. Biotechnol. Res. Asia 12, 197–200 (2015)Google Scholar
  15. 15.
    Lebedev, G.N., Yagnyukova, A.K., Tolstaya, A.M., Bulychev, I.G.: Gamma-probe based on scintillation crystal and silicon photomultipliers for cancer detection. Int. J. Tomogr. Simul. 29(3), 92–103 (2016)Google Scholar
  16. 16.
    Romanova, S.: Nuclear medicine: status and prospects. Remedium (6), 8–20 (2013)Google Scholar
  17. 17.
    Georgiou, M.: Evaluation of an imaging gamma probe based on R8900U-00-C12 PSPMT. In: IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 4020–4023 (2011)Google Scholar
  18. 18.
    Seifert, S., van Dam, H.T., Huizenga, J., Vinke, R., Dendooven, P., Lohner, H., Schaart, D.R.: Simulation of silicon photomultiplier signals. IEEE Trans. Nucl. Sci. 56(6), 3726–3733 (2009)CrossRefGoogle Scholar
  19. 19.
    Wangerin, K.A., Wang, G.-C., Kim, C., Danon, Y.: Passive electrical model of silicon photomultipliers. In: IEEE Nuclear Science Symposium Conference Record, pp. 4906–4913 (2008)Google Scholar
  20. 20.
    Yagnyukova, A., Mikhaylov, D., Khabibullin, T., Grigorenko, A., Leonid, P.: Gamma-probe for revealing cancerous cells. Stud. Ethno-Med. (2015)Google Scholar
  21. 21.
    Christillin, P.: Nuclear Compton scattering. J. Phys. G: Nucl. Phys. 12(9), 837–851 (1986)CrossRefGoogle Scholar
  22. 22.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Timur Khabibullin
    • 1
  • Andrey Starikovskiy
    • 1
  • Anastasia Tolstaya
    • 1
  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations