Advertisement

A Simple Virtual Actor Model Supporting Believable Character Reasoning in Virtual Environments

  • Pavel A. Bortnikov
  • Alexei V. Samsonovich
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 636)

Abstract

An artifact needs to possess a human-level social-emotional intelligence in order to be accepted as a team member and to be productive in the team. A general theoretical model describing this kind of artificial intelligence is currently missing. This work makes one step toward its development, using a simplistic virtual environment paradigm and an emotional biologically inspired cognitive architecture as the basis. We describe a Virtual Actor model supporting believable character reasoning. The model was implemented and tested in a pilot experiment in a virtual environment involving human participants. Preliminary results indicate that a Virtual Actor of this sort can be believable and socially acceptable in a small heterogeneous group.

Keywords

Narrative intelligence Social-emotional intelligence Cognitive architectures Believable virtual characters BICA challenge 

Notes

Acknowledgments

We are grateful to NRNU MEPhI Students who contributed to this study as participants or developers, in particular, to Mr. Arthur Chubarov for creating the virtual environment platform used in experiments, and to Mr. Daniil Azarnov for valuable discussions. This work was supported by the RSF Grant # 15-11-30014.

References

  1. 1.
    Meyer, J.-J.C., van der Hoek, W., van Linder, B.: A logical approach to the dynamics of commitments. Artif. Intell. 113, 1–40 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Meyer, J.-J.C.: Reasoning about emotional agents. In: Proceedings of ECAI 2004, pp. 129–133. IOS Press (2004)Google Scholar
  3. 3.
    Gratch, J., Marsella, S.: A domain-independent framework for modeling emotions. J. Cogn. Syst. Res. 5(4), 269–306 (2004)CrossRefGoogle Scholar
  4. 4.
    Steunebrink, B.R., Dastani, M., Meyer, J.-J.C.: A logic of emotions for intelligent agents. In: Proceedings of AAAI 2007. AAAI Press, Menlo Park (2007)Google Scholar
  5. 5.
    Jung, Y., Kuijper, A., Fellner, D.W., Kipp, M., Miksatko, J., Gratch, J., Thalmann, D.: Believable virtual characters in human-computer dialogs. Eurographics (STARs) 2011, 75–100 (2011)Google Scholar
  6. 6.
    Samsonovich, A.V.: Emotional biologically inspired cognitive architecture. Biol. Inspired Cogn. Archit. 6, 109–125 (2013)Google Scholar
  7. 7.
    Samsonovich, A.V., Tolstikhina, A., Bortnikov, P.A.: A test for believable social emotionality in Virtual Actors. Procedia Comput. Sci. 88, 450–458 (2016)CrossRefGoogle Scholar
  8. 8.
    Heider, F., Simmel, M.: An experimental study of apparent behavior. Am. J. Psychol. 57, 243–259 (1944). https://doi.org/10.2307/1416950CrossRefGoogle Scholar
  9. 9.
    Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar
  10. 10.
    Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)CrossRefGoogle Scholar
  11. 11.
    Sloman, A.: Beyond shallow models of emotion. Cogn. Process. 2(1), 177–198 (2001)Google Scholar
  12. 12.
    Chubarov, A., Azarnov, D.: Modeling behavior of virtual actors: a limited turing test for social-emotional intelligence. In: Samsonovich, A.V. and Klimov, V.V. (eds.) Biologically Inspired Cognitive Architectures for Young Scientists. Advances in Intelligent Systems and Computing, pp. 32–39. Springer, Berlin (2017)Google Scholar
  13. 13.
    Samsonovich, A.V., Aha, D.W.: Character-oriented narrative goal reasoning in autonomous actors. In: Aha, D.W. (ed.) Goal Reasoning: Papers from the ACS Workshop. Technical Report GT-IRIM-CR-2015-001, pp. 166–181 (2015). https://smartech.gatech.edu/bitstream/handle/1853/53646/Technical%20Report%20GT-IRIM-CR-2015-001.pdf
  14. 14.
    Haven, K.: Story Proof: The Science Behind the Startling Power of Story. Libraries Unlimited, Westport (2007). ISBN 978-1-59158-546-6Google Scholar
  15. 15.
    Haven, K.: Story Smart: Using the Science of Story to Persuade, Influence, Inspire, and Teach. ABC-CLIO, LLC, Santa Barbara (2014). ISBN 9781610698115Google Scholar
  16. 16.
    Abell, P.: A Case for cases: comparative narratives in sociological explanation. Sociol. Methods Res. 38(1), 38–70 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Schmid, W.: Narratology: An Introduction. Walter de Gruyter GmbH & Co. KG, Berlin/New York (2010). ISBN 978-3-11-022631-7Google Scholar
  18. 18.
    Finlayson, M.A., Corman, S.R.: The military interest in narrative. Sprache und Datenverarbeitung (Int. J. Lang. Data Process.) 37(1–2), 173–191 (2013)Google Scholar
  19. 19.
    Riedl, M.O., Young, R.M.: Narrative planning: Balancing plot and character. J. Artif. Intell. Res. 39, 217–268 (2010)CrossRefGoogle Scholar
  20. 20.
    Turing, A.M.: Computing machinery and intelligence. Mind LIX 59, 433–460 (1950)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Korukonda, A.R.: Taking stock of Turing test: a review, analysis, and appraisal of issues surrounding thinking machines. Int. J. Hum Comput Stud. 58, 240–257 (2003)CrossRefGoogle Scholar
  22. 22.
    Eidlin, A.A., Samsonovich, A.V.: A roadmap to emotionally intelligent creative virtual assistants. In: Samsonovich, A.V., Klimov, V.V.: Biologically Inspired Cognitive Architectures for Young Scientists. Advances in Intelligent Systems and Computing, pp. 46–56. Springer, Berlin (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.National Research Nuclear University “Moscow Engineering Physics Institute”MoscowRussian Federation
  2. 2.George Mason UniversityFairfaxUSA

Personalised recommendations