Advertisement

Classical and Molecular Approaches for Mapping of Genes and Quantitative Trait Loci in Peanut

  • Manish K. Vishwakarma
  • Spurthi N. Nayak
  • Baozhu Guo
  • Liyun Wan
  • Boshou Liao
  • Rajeev K. Varshney
  • Manish K. PandeyEmail author
Chapter
Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Advances in availability of genomic resources coupled with genetic resources have accelerated the process of developing better understanding of cytogenetics and genetics of peanut using modern technologies. The cytogenetic studies provided greater insights on chromosomal structures and behaviour of different Arachis species along with their genetic relationship with each other. Researchers are moving faster now in using single nucleotide polymorphism (SNP) markers in their genetic studies as simple sequence repeats (SSRs) did not provide optimum genome density for genetic mapping studies in peanut. Due to availability of reference genome of diploid progenitors, resequencing of some genotypes and soon to be available tetraploid genome, a high-density genotyping array with 58 K SNPs is now available for conducting high-resolution mapping in peanut. ICRISAT has developed next generation genetic mapping populations such as multi-parent advanced generation intercross (MAGIC) and nested association mapping (NAM) populations for conducting high-resolution trait mapping for multiple traits in one go. Affordability of sequencing also encouraged initiation of sequence-based trait mapping such as QTL-seq for dissecting foliar disease resistance trait. Few successful examples are available in peanut regarding development of diagnostic markers and their deployment in breeding to develop improved genotypes, which may see a significant increase in coming years for developing appropriate genomics tools for breeding in peanut.

Keywords

High throughput genotyping Genetic markers Genetic mapping Association mapping Diagnostic markers Molecular breeding 

Notes

Acknowledgements

We would like to express our appreciation to the financial support from the Peanut Foundation, MARS Inc., the Georgia Peanut Commission and the U.S. National Peanut Board, Bill & Melinda Gates Foundation (Tropical Legumes I, II & III), Department of Biotechnology (DBT) of Government of India and World Bank Assisted Watershed Development Project II (KWDP-II) by Government of Karnataka, India. The work reported in this article was undertaken as a part of the CGIAR Research Program on Grain Legumes. ICRISAT is a member of the CGIAR.

References

  1. Abe A, Kosugi S, Yoshida K et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–179CrossRefPubMedGoogle Scholar
  2. Alpert KB, Tanksley SD (1996) High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA 93:15503–15507CrossRefPubMedPubMedCentralGoogle Scholar
  3. Austin RS, Vidaurre D, Stamatiou G et al (2011) Next generation mapping of Arabidopsis genes. Plant J 67:715–725CrossRefPubMedGoogle Scholar
  4. Beissinger TM, Hirsch CN, Sekhon RS, Foerster JM, Johnson JM, Muttoni G et al (2013) Marker density and read depth for genotyping populations using genotyping-by-sequencing. Genetics 193:1073–1081. doi: 10.1534/genetics.112.147710 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bertioli SCM, José ACVF, Alves-Freitas DMT, Moretzsohn MC, Guimarães PM, Nielen S, Vidigal BS et al (2009) Identification of candidate genome regions controlling disease resistance in Arachis. BMC Plant Biol 9(1):112CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bertioli DJ, Ozias-Akins P, Chu Y, Dantas KM, Santos SP, Gouvea E, Guimarães PM, Leal-Bertioli SC, Knapp SJ, Moretzsohn MC (2014) The use of SNP markers for linkage mapping in diploid and tetraploid peanuts. G3 (Bethesda) 4(1):89–96Google Scholar
  7. Bertioli DJ, Cannon SB, Froenicke Lutz, Huang G et al (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature. doi: 10.1038/ng.3517 Google Scholar
  8. Burow MD, Simpson CE, Paterson AH, Starr JL et al (1996) Identification of peanut (Arachis hypogaea L.) RAPD markers diagnostic of root-knot nematode (Meloidogyne arenaria (Neal) Chitwood) resistance. Mol Breed: new strat plant improv 2:369–379CrossRefGoogle Scholar
  9. Burow MD, Simpson CE, Starr JL, Paterson AH (2001) Transmission genetics of chromatin from a synthetic amphiploid in cultivated peanut (A. hypogaea L.): Broadening the gene pool of a monophyletic polyploid species. Genetics 159:823–837Google Scholar
  10. Burow MD, Simpson CE, Faries MW, Starr JL, Paterson A (2009) Molecular biogeographic study of recently described B- and A-genome Arachis species, also providing new insights into the origins of cultivated peanut. Genome 52:107–119CrossRefPubMedGoogle Scholar
  11. Burow MD, Leal-Bertioli SC, Simpson CE, Ozias-Akins P, Chu Y, Denwar NN, Chagoya J, Starr JL, Moretzsohn MC, Pandey MK et al (2013) Marker-assisted selection for biotic stress resistance in peanut. Transl Genomics Crop Breed: 125–150Google Scholar
  12. Burow MD, Starr JL, Park C, Simpson CE, Paterson AH (2014) Introgression of homeologous quantitative trait loci (QTLs) for resistance to the root-knot nematode [Meloidogyne arenaria (Neal) Chitwood] in an advanced backcross-QTL population of peanut (Arachis hypogaea L.). Mol Breed 34(2):393–406Google Scholar
  13. Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221CrossRefPubMedGoogle Scholar
  14. Chen X, Li H, Pandey MK et al (2016a) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis and allergens. PNAS 113(24):6785–6790. doi: 10.1073/pnas.1600899113
  15. Chen W, Jiao Y, Cheng L et al (2016b) Quantitative trait locus analysis for pod- and kernel-related traits in the cultivated peanut (Arachis hypogaea L.). BMC Genet 17:25CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chenault KD, Maas AL (2006) Identification of a simple sequence repeat (SSR) marker in cultivated peanut (Arachis hypogaea L.) potentially associated with Sclerotinia blight resistance. Proc Am Peanut Res Educ Soc 37:24–25Google Scholar
  17. Chopra R, Burow G, Farmer A, Mudge J, Simpson CE, Wilkins TA, Baring MR, Puppala N, Chamberlin KD, Burow MD (2015) Next-generation transcriptome sequencing, SNP discovery and validation in four market classes of peanut, Arachis hypogaea L. Mol Genet Genom 290:1169–1180CrossRefGoogle Scholar
  18. Chu Y, Holbrook CC, Timper P, Ozias-Akins P (2007) Development of a PCR-based molecular marker to select for nematode resistance in peanut. Crop Sci 47:841–845CrossRefGoogle Scholar
  19. Chu Y, Wu CL, Holbrook CC, Tillman BL, Person G, Ozias-Akins P (2011) Marker assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 4:110–117CrossRefGoogle Scholar
  20. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510CrossRefPubMedGoogle Scholar
  21. Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 85(12):1693–1703Google Scholar
  22. Dwivedi SL, Bertioli DJ, Crouch JH, Valls JF, Upadhyaya HD, Fávero A, Moretzsohn M, Paterson AH (2007) Peanut. In: Kole C (ed) Genome mapping and molecular breeding in plants. Springer, Berlin, pp 115–151Google Scholar
  23. Dwivedi SL, Upadhyaya HD, Stalker HT, Blair MW, Bertioli D, Nielen S, Ortiz R (2008) Enhancing crop gene pools of cereals and legumes with beneficial traits using wild relatives. Plant Breed Rev, vol 30. Wiley, New York, pp 179–280Google Scholar
  24. FAOSTAT. http://faostat.fao.org/ (accessed on 10 March 2016)
  25. Fekih R, Takagi H, Tamiru M et al (2013) MutMap +: genetic mapping and mutant identification without crossing in rice. PLoS ONE 8(7):e68529CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fonceka D, Tossim HA, Rivallan R, Vignes H et al (2012) Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol 12:26Google Scholar
  27. Foncéka D, Tossim HA, Rivallan R et al (2009) Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol 9:103CrossRefPubMedPubMedCentralGoogle Scholar
  28. Garcia GM, Stalker HT, Schroeder E, Kochert G (1996) Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39(5):836–845CrossRefPubMedGoogle Scholar
  29. Garcia GM, Stalker HT, Schroeder E, Lyerly JH, Kochert G (2005) A RAPD-based linkage map of peanut based on a backcross population between the two diploid species Arachis stenosperma and A. cardenasii. Peanut Sci 32:1–8CrossRefGoogle Scholar
  30. Gautami B, Pandey MK, Vadez V et al (2012a) QTL analysis and consensus genetic map for drought tolerance traits based on three RIL populations of cultivated groundnut (Arachis hypogaea L.). Mol Breed 32:757–772CrossRefGoogle Scholar
  31. Gautami B, Foncéka D, Pandey MK et al (2012b) An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for tetraploid groundnut (Arachis hypogaea L.). PLoS ONE 7(7):e41213CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gowda MVC, Motagi BN, Naidu GK, Diddimani SB, Sheshagiri R (2002) GPBD 4: A Spanish bunch groundnut genotype resistant to rust and late leaf spot. Int Arachis Newsl 22:29–32Google Scholar
  33. Guo Y, Khanal S, Tang S et al (2012) Comparative mapping in intraspesific populations uncovers high degree of macrosynteny between A- and B-genome diploid species of peanut. BMC Genom 13:608CrossRefGoogle Scholar
  34. Guo B, Pandey MK, He G et al (2013) Recent advances in molecular genetic linkage maps of cultivated peanut (Arachis hypogaea L.). Peanut. Science 40(2):95–106Google Scholar
  35. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetics and plant breeding with emphasis on bread wheat. Euphytica 113:163–185Google Scholar
  36. Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: a new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Curr Sci 80(4):25Google Scholar
  37. Gupta PK, Kulwal PL, Jaiswal V (2014) Association mapping in crop plants: opportunities and challenges. Adv Genet 85:109PubMedGoogle Scholar
  38. Halward T, Stalker HT, Kochert G (1993) Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 87(3):379–384CrossRefPubMedGoogle Scholar
  39. He G, Prakash CS (1997) Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97:143–149CrossRefGoogle Scholar
  40. Herselman L (2003) Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica 133:319–327CrossRefGoogle Scholar
  41. Herselman L, Thwaites R, Kimmins FM et al (2004) Identification and mapping of AFLP markers linked to peanut (Arachis hypogaea L.) resistance to the aphid vector of groundnut rosette disease. Theor Appl Genet 109:1426–1433CrossRefPubMedGoogle Scholar
  42. Hong Y, Liang X, Chen X et al (2008) Construction of genetic linkage map based on SSR markers in peanut (Arachis hypogaea L.). Agric Sci China 7(8):915–921CrossRefGoogle Scholar
  43. Hong Y, Liang X, Chen X et al (2009) Construction of genetic linkage map in peanut (Arachis hypogaea L.) cultivars. Acta Agron Sin 35(3):395–402CrossRefGoogle Scholar
  44. Hong Y, Chen X, Liang X et al (2010) A SSR based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol 10:17CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hong Y, Pandey MK, Liu Y, Chen X, Liu H, Varshney RK, Liang X, Huang S (2015) Identification and evaluation of single-nucleotide polymorphisms in allotetraploid peanut (Arachis hypogaea L.) based on amplicon sequencing combined with high resolution melting (HRM) analysis. Front Plant Sci 6. doi: 10.3339/fpls.2015.01068
  46. Hopkins MS, Casa AM, Wang T et al (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39:1243–1247CrossRefGoogle Scholar
  47. Huang X, Feng Q, Qian Q et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076CrossRefPubMedPubMedCentralGoogle Scholar
  48. Husted L (1933) Cytological studies of the peanut Arachis I. Chromosome number and morphology. Cytologia 5:109117CrossRefGoogle Scholar
  49. Hyten DL, Song Q, Fickus EW et al (2010) High-throughput SNP discovery and assay development in common bean. BMC Genom 11:475CrossRefGoogle Scholar
  50. Imataka G, Arisaka O (2012) Chromosome analysis using spectral karyotyping (SKY). Cell Biochem Biophys 62(1):13–17CrossRefPubMedGoogle Scholar
  51. Iyer-Pascuzzi Anjali S, Sweeney MT et al (2007) Use of naturally occurring alleles for crop improvement. Rice Functional Genomics. Springer, New York, pp 107–147CrossRefGoogle Scholar
  52. Janila P, Nigam SN (2013) Phenotyping for groundnut (Arachis hypogaea L.) improvement. In: Panguluri SK, Kumar AA (eds) Phenotyping for plant breeding: applications of phenotyping methods for crop improvement, pp 129–167Google Scholar
  53. Janila P, Pandey MK, Shasidhar Y et al (2016a) Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci 242:203–213Google Scholar
  54. Janila P, Nigam SN, Pandey MK et al (2016b) Groundnut improvement: use of genetic and genomic tools. Front Plant Sci 4:23Google Scholar
  55. Janila P, Pandey MK, Manohar SS et al (2016c) Foliar fungal disease-resistant introgression lines of groundnut (Arachis hypogaea L.) record higher pod and haulm yield in multilocation testing. Plant Breed 135:355–366Google Scholar
  56. Jiang H, Chen B, Ren X et al (2007) Identification of SSR markers linked to bacterial wilt resistance of peanut with RILs. Chin J Oil Crop Sci 29(1):26–30Google Scholar
  57. Jiang H, Huang L, Ren X et al (2014) Diversity characterization and association analysis of agronomic traits in a Chinese peanut (Arachis hypogaea L.) minicore collection. J Integr Plant Biol 56:159–169CrossRefPubMedGoogle Scholar
  58. Johnson S, Saikia N, Mathur HB, Agarwal HC (2009) Fatty acids profile of edible oils and fats in India.Centre for Science and Environment, New Delhi, pp 3–31Google Scholar
  59. Khedikar YP, Gowda MV, Sarvamangala C et al (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet 121:971–984Google Scholar
  60. Khera P, Upadhyaya HD, Pandey MK et al (2013) Single nucleotide polymorphism–based genetic diversity in the reference set of peanut (Arachis spp.) by developing and applying cost-effective kompetitive allele specific polymerase chain reaction genotyping assays. The Plant Genome 6:1–11CrossRefGoogle Scholar
  61. Kochert G, Stalker HT, Gimenes M et al (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83(10):1282–1291CrossRefGoogle Scholar
  62. Kumari V, Gowda MVC, Tasiwal V, Pandey MK et al (2014) Diversification of primary gene pool through introgression of resistance allele for foliar diseases from synthetic amphidiploids to cultivated groundnut (Arachis hypogaea L.). The Crop J 2(2–3):110–119Google Scholar
  63. Lacks GD, Stalker HT (1993) Isozyme analyses of Arachis species and interspecific hybrids. Peanut Science 20(2):76–81CrossRefGoogle Scholar
  64. Leal-Bertioli SCM, Cavalcante U, Gouvea EG, Ballen-Taborda C, Shirasawa K, Guimaraes PM, Jackson SA, Bertioli DJ, Moretzsohn MC (2015) Identification of QTLs for rust resistance in the peanut wild species Arachis magna and the development of KASP markers for marker-assisted selection. G3-Genes Genomes. Genetics 5:1403–1413Google Scholar
  65. Leal-Bertioli SC, Moretzsohn MC, Roberts PA et al (2016) Genetic mapping of resistance to Meloidogyne arenaria in Arachis stenosperma: a new source of nematode resistance for peanut. G3: Genes, Genomes, Genetics 6:377–390Google Scholar
  66. Liang X, Zhou G, Hong Y et al (2009) Overview of research progress on peanut (Arachis hypogaea L.) host resistance to aflatoxin contamination and genomics at the Guangdong Academy of Agricultural Sciences. Peanut Sci 36:29–34CrossRefGoogle Scholar
  67. Liu S, Yeh CT, Tang HM et al (2012) Gene mapping via bulked segregant RNA-Seq (BSR-Seq). PLoS ONE 7(5):e36406CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lopez Y, Nadaf HL, Smith OD et al (2000) Isolation and characterization of the Delta superior 1 superior 2-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet 101:1131–1138CrossRefGoogle Scholar
  69. Lu H, Lin T, Klein J et al (2014) QTLseq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127:1491–1499CrossRefPubMedGoogle Scholar
  70. Luo H, Zhu H, Li Z et al (2017) Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.) Theor Appl Genet 130:1635–1648Google Scholar
  71. Macedo SE, Moretzsohn MC, Leal-Bertioli SC et al (2012) Development and characterization of highly polymorphic long TC repeat microsatellite markers for genetic analysis of peanut. BMC Res Notes 5:86Google Scholar
  72. Mallikarjuna N, Jadhav DR, Reddy K et al (2012) Screening new Arachis amphidiploids, autotetraploids for resistance to late leaf spot by detached leaf technique. Eur J Plant Pathol 132:17–21CrossRefGoogle Scholar
  73. McMullen MD, Kresovich S, Villeda HS (2009) et al. Genetic properties of the maize nested association mapping population. Science 325:737–740CrossRefPubMedGoogle Scholar
  74. Mienie CMS, Pretorius AE (2013) Application of marker-assisted selection for ahFAD2A and ahFAD2B genes governing the high-oleic acid trait in South African groundnut cultivars (Arachis hypogaea L.). Afr J Biotechnol 12(27):4283CrossRefGoogle Scholar
  75. Milla SR (2003) Relationships and utilization of Arachis germplasm in peanut improvement. Ph.D. Thesis, North Carolina State UniversityGoogle Scholar
  76. Mondal S, Badigannavar AM, D’Souza SF (2012) Molecular tagging of a rust resistance gene in cultivated groundnut (Arachis hypogaea L.) introgressed from Arachis cardenasii. Mol Breed 29:467–476Google Scholar
  77. Mondal S, Hande P, Badigannavar AM (2014a) Identification of transposable element markers for a rust (Puccinia arachidis Speg.) resistance gene in cultivated peanut. J Phytopath 162:548–552Google Scholar
  78. Mondal S, Hadapad AB, Hande PA, Badigannavar AM (2014b) Identification of quantitative trait loci for bruchid (Caryedon serratus Olivier) resistance components in cultivated groundnut (Arachis hypogaea L.). Mol Breed 33:961–973Google Scholar
  79. Mondal S, Phadke RR, Badigannavar AM (2015) Genetic variability for total phenolics, flavonoids and antioxidant activity of testaless seeds of a peanut recombinant inbred line population and identification of their controlling QTLs. Euphytica 204:311–321CrossRefGoogle Scholar
  80. Moretzsohn MC, Leoi L, Proite K et al (2005) A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111(6):1060–1071CrossRefPubMedGoogle Scholar
  81. Moretzsohn MC, Barbosa AV, Alves-Freitas DM et al (2009) A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol 9:40CrossRefPubMedPubMedCentralGoogle Scholar
  82. Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13:85–96Google Scholar
  83. Nagy ED, Chu Y, Guo Y et al (2010) Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Mol Breed 26:357–370Google Scholar
  84. Nagy ED, Guo Y, Tang S et al (2012) A high-density genetic map of Arachis duranensis, a diploid ancestor of cultivated peanut. BMC Genomics 13: 469Google Scholar
  85. Nigam SN, Rao PRDVJ, Bhatnagar-Mathur P, Sharma KK (2012) Genetic management of virus diseases in peanut, In: Janick J (ed) Plant breeding reviews vol 36. Wiley, NewYork, pp 293–356Google Scholar
  86. Pandey MK, Nigam SN, Upadhyaya HD et al (2012a) Advances in Arachis genomics for peanut improvement. Biotechnol Adv 30:639–651Google Scholar
  87. Pandey MK, Gautami B, Jayakumar T et al (2012b) Highly informative genic and genomic SSR markers to facilitate molecular breeding in cultivated groundnut (Arachis hypogaea). Plant Breed 131:139–147Google Scholar
  88. Pandey MK, Guo B, Holbrook CC et al (2014a) Molecular markers, genetic maps and QTLs for molecular breeding in peanut. In: Genetics, genomics and breeding of peanuts. genetics, genomics and breeding of crop plant, CRC Press, Boca Raton, pp 79–113Google Scholar
  89. Pandey MK, Upadhyaya HD, Rathore A et al (2014b) Genome-wide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS One 9(8):e105228Google Scholar
  90. Pandey MK, Wang ML, Qiao L et al (2014c) Identification of QTLs associated with peanut oil contents in RIL populations and mapping FAD2 genes and their relative contribution towards oil quality. BMC Genetics 15:133Google Scholar
  91. Pandey MK, Roorkiwal M, Singh VK et al (2016a) Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci 7:455Google Scholar
  92. Pandey MK, Khan AW, Singh VK, Vishwakarma MK, Shasidhar Y, Kumar V, Garg V, Bhat RS, Chitikineni A, Janila P, Guo B, Varshney RK (2016b) QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnol J. doi: 10.1111/pbi.12686
  93. Pandey MK, Agarwal G, Kale SM, Clevenger J, Nayak SN, Sriswathi M, Chitikineni A, Chavarro C, Chen X, Upadhyaya HD, Vishwakarma MK, Leal-Bertioli S, Liang X, Bertioli DJ, Guo B, Jackson SA, Ozias-Akins P, Varshney RK (2017a) Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci Rep 7:40577. doi: 10.1038/srep40577 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Pandey MK, Wang H, Khera P, Vishwakarma MK, Kale SM, Culbreath AK, Holbrook CC, Wang X, Varshney RK, Guo B (2017b) Genetic dissection of novel QTLs for resistance to leaf spots and tomato spotted wilt virus in peanut (Arachis hypogaea L.). Front. Plant Sci 8:25. doi: 10.3389/fpls.2017.00025 Google Scholar
  95. Pei D, Hua L, Li-na L et al (2015) Chromosome analysis of peanut (Arachis hypogaea L.) based on sequential GISH-FISH. Scientia Agricultura Sinica 48 (9):1854–1863Google Scholar
  96. Peng W, Jiang H, Ren X et al (2010) Construction of peanut AFLP map and analysis of bacterial wilt resistant disease QTLs. Acta Agriculturae Boreali-Sinica 25(6):81–86Google Scholar
  97. Peng Z, Gallo M, Tillman BL et al (2016) Molecular marker development from transcript sequences and germplasm evaluation for cultivated peanut (Arachis hypogaea L.). Mol Genet Genomics 291:363–381CrossRefPubMedGoogle Scholar
  98. Qin H, Feng S, Chen C et al (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124:653–664Google Scholar
  99. Raina SN, Mukai Y (1999) Genomic in situ hybridization in Arachis (Fabaceae) identifies the diploid wild progenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species. Plant Syst Evol 214:251–262Google Scholar
  100. Ravi K, Vadez V, Isobe S et al (2011) Identification of several small-effect main QTLs and large number of epistatic QTLs for drought tolerance in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132Google Scholar
  101. Ray TK, Holly SP, Knauft DA et al (1993) The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of Δ12–desaturase activity. Plant Science 91:15–21Google Scholar
  102. Robledo G, Seijo JG (2010) Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theor Appl Genet 121:1033–1046Google Scholar
  103. Robledo G, Lavia GI, Seijo G (2009) Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor Appl Genet 118:1295–1307Google Scholar
  104. Sarvamangala C, Gowda MV, Varshney RK (2011) Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field Crops Res 122:49–59Google Scholar
  105. Schneeberger K, Weigel D (2011) Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci 16:282–288Google Scholar
  106. Schneeberger K, Ossowski S, Lanz C et al (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551Google Scholar
  107. Seijo JG, Lavia GI, Fernandez A et al (2004) Physical mapping of the 5S and 18S-25S RRNA gene by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). Am J Bot 91:1294–1303CrossRefPubMedGoogle Scholar
  108. Seijo JG, Lavia GI, Ferna´ndez A et al (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94:1963–1971Google Scholar
  109. Selvaraj MG, Narayana M, Schubert AM et al (2009) Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electron J Biotech 12(2): 3–4Google Scholar
  110. Sharma S, Upadhyaya HD, Varshney RK, Gowda CL (2013) Pre-breeding for diversification of primary genepool and genetic enhancement of grain legumes. Front Plant Sci 20(4):309Google Scholar
  111. Shasidhar Y, Vishwakarma MK, Pandey MK et al (2017) Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut. Front Plant Sci 8:794Google Scholar
  112. Shilpa K, Sunkad G, Kurella S et al (2013) Biochemical composition and disease resistance in newly synthesized amphidiploid and autotetraploid peanuts. Food and Nutr Sci 4(2):169–176CrossRefGoogle Scholar
  113. Shirasawa K, Hirakawa H, Tabata S et al (2012a) Characterization of active miniature inverted-repeat transposable elements in the peanut genome. Theor Appl Genet 124:1429–1438Google Scholar
  114. Shirasawa K, Koilkonda P, Aoki K et al (2012b) In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol 12:80Google Scholar
  115. Shirasawa K, Bertioli DJ, Varshney RK et al (2013) Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes. DNA Res 20(2):173–184CrossRefPubMedPubMedCentralGoogle Scholar
  116. Simpson CE (1991) Pathways for introgression of pest resistance into Arachis hypogaea L. Peanut Sci 18(1):22–26CrossRefGoogle Scholar
  117. Simpson CE, Starr JL (2003) Registration of COAN’peanut. Crop Sci 41(3):918CrossRefGoogle Scholar
  118. Simpson CE, Starr JL, Church GT et al (2003) Registration of ‘NemaTAM’ peanut. (Registrations Of Cultivars). Crop Sci 43(4):1561–1562CrossRefGoogle Scholar
  119. Smartt J, Stalker HT (1982) Speciation and cytogenetics in Arachis. In: Pattee HE, Young CE (eds) Peanut science and technology. Am Peanut Res Ed Soc, Yoakum, TX, pp 21–49Google Scholar
  120. Smartt J, Gregory WC, Gregory MP (1978) The genomes of Arachis hypoaea. I. Cytogenetic studies of the putative genome donors. Euphytica 27:665–675CrossRefGoogle Scholar
  121. Stalker HT (1991) A new species in the section Arachis of peanuts with D genome. Am J Bot 78:630–637CrossRefGoogle Scholar
  122. Stalker HT, Dalmacio RD (1986) Karyotype analysis and relationships among varieties of Arachis hypogaea L. Cytologia 58:617–629Google Scholar
  123. Stalker HT, Dhesi JS, Parry D (1991) An analysis of the B genome species Arachis batizocoi. Plant Syst Evol 174:159–169CrossRefGoogle Scholar
  124. Subramanian V, Gurtu S, Nageswara Rao RC, Nigam SN (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43(4):656–660CrossRefPubMedGoogle Scholar
  125. Sujay V, Gowda MV, Pandey MK et al (2012) QTL analysis and construction of consensus genetic map for foliar diseases resistance based on two RIL populations in cultivated groundnut (Arachis hypogaea L.). Mol Breed 32:773–788CrossRefGoogle Scholar
  126. Takagi H, Abe A, Yoshida K et al (2013a) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183CrossRefPubMedGoogle Scholar
  127. Takagi H, Uemura A, Yaegashi H et al (2013b) MutMap-Gap: whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii. New Phytol 200:276–283CrossRefPubMedGoogle Scholar
  128. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277(5329):1063–1066CrossRefPubMedGoogle Scholar
  129. Tanksley SD, Grandillo S, Fulton TM et al (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224CrossRefPubMedGoogle Scholar
  130. Upadhyaya HD, Sharma S, Dwivedi SL (2011) Arachis. In: Kole C (ed) Wild crop relatives: genomics and breeding resources, Legume Crops and Forages. Springer, Berlin, pp 1–19Google Scholar
  131. Upadhyaya HD, Sharma S, Dwivedi SL (2012) Arachis In: Wild crop relatives:genomic and breeding resources, legume crops and forages, Springer, Berlin, pp 1–19Google Scholar
  132. Varshney RK (2016) Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant Sci 242:98–107CrossRefPubMedGoogle Scholar
  133. Varshney RK, Nayak SN, May GD et al (2009a) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530Google Scholar
  134. Varshney RK, Bertioli DJ, Moretzsohn MC et al (2009b) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet 118:729–739Google Scholar
  135. Varshney RK, Mohan SM, Gaur PM et al (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 31:1120–1134CrossRefPubMedGoogle Scholar
  136. Varshney RK, Pandey MK, Janila P et al (2014) Marker assisted introgression of a QTL region to improve rust resistance in three elite and popular varieties of peanut (Arachis hypogaea L.). Theor Appl Genet 127:1771–1781CrossRefPubMedPubMedCentralGoogle Scholar
  137. Varshney RK, Singh VK, Hickey J et al (2015a) Analytical and decision support tools for genomics-assisted breeding. Trends Plant Sci S1360–1385(15):00277. doi: 10.1016/j.tplants.2015.10.018 Google Scholar
  138. Varshney RK, Kudapa H, Pazhamala L et al (2015b) Translational genomics in agriculture: some examples in grain legumes. Crit Rev Plant Sci 34:169–194CrossRefGoogle Scholar
  139. Verbyla AP, George AW, Cavanagh CR, Verbyla KL (2014) Whole-genome QTL analysis for MAGIC. Theor Appl Genet 127:1753–1770CrossRefPubMedGoogle Scholar
  140. Vishwakarma MK, Pandey MK, Shasidhar Y et al (2016) Identification of two major quantitative trait locus for fresh seed dormancy using the diversity arrays technology and diversity arrays technology seq based genetic map in Spanish type peanuts. Plant Breed 135(3):367–375CrossRefGoogle Scholar
  141. Wang Q, Zhang X, Tang F et al (2010) Construction of genetic linkage map of peanut (Arachis hypogaea L.) based on SRAP markers. Chin J Oil Crop Sci 32:374–378Google Scholar
  142. Wang M, Sukumaran S, Barkley NA et al (2011) Population structure and marker-trait association analysis of the US peanut (Arachis hypogaea L.) mini-core collection. Theor Appl Genet 123:1307–1317CrossRefPubMedGoogle Scholar
  143. Wang H, Penmetsa RV, Yuan M et al (2012) Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.). BMC Plant Biol 12:10CrossRefPubMedPubMedCentralGoogle Scholar
  144. Wang H, Pandey MK, Qiao L et al (2013) Genetic mapping and QTL analysis for disease resistance using F2 and F5 generation-based genetic maps derived from Tifrunner × GT-C20 in peanut (Arachis hypogaea L.). Plant Genome 6:3CrossRefGoogle Scholar
  145. Wang H, Khera P, Culbreath AK et al (2014) Genetic mapping and QTL analysis of disease resistance traits in peanut population Tifrunner × GT-C20. Proceedings of Advances in Arachis through Genomics & Biotechnology, Savannah, USA, November 11–13Google Scholar
  146. Wang M, Khera P, Pandey MK et al (2015) Genetic mapping of quantitative trait loci (QTL) controlling fatty acid composition in two recombinant inbred line populations in cultivated peanuts (Arachis hypogaea L.). PLoS One doi: 10.1371/journal.pone.0119454
  147. Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551CrossRefPubMedPubMedCentralGoogle Scholar
  148. Zhao Y, Prakash CS, He G (2012) Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public database. BMC Res Notes 5:362CrossRefPubMedPubMedCentralGoogle Scholar
  149. Zhao Y, Zhang C, Chen H et al (2016) QTL mapping for bacterial wilt resistance in peanut (Arachis hypogaea L.). Mol Breed 36:13Google Scholar
  150. Zhao C, Qiu J, Agarwal G et al (2017) Genome-wide discovery of microsatellite markers from diploid progenitor species, Arachis duranensis and A. ipaensis, and their application in cultivated peanut (A. hypogaea). Front Plant Sci 8:1209 Google Scholar
  151. Zhou X, Xia Y, Ren X et al (2014) Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genom 15:351CrossRefGoogle Scholar
  152. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Manish K. Vishwakarma
    • 1
  • Spurthi N. Nayak
    • 1
  • Baozhu Guo
    • 2
  • Liyun Wan
    • 3
  • Boshou Liao
    • 4
  • Rajeev K. Varshney
    • 1
  • Manish K. Pandey
    • 1
    Email author
  1. 1.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)HyderabadIndia
  2. 2.USDA-ARS, Crop Protection and Management Research UnitTiftonUSA
  3. 3.Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural SciencesWuhanChina
  4. 4.Crops Research Institute of the Chinese Academy of Agricultural SciencesWuhanChina

Personalised recommendations