The Local and Systemic Effects of Cobalt-Chromium Nanoparticles on the Human Body: The Implications for Metal-on-Metal Hip Arthroplasty

  • James DrummondEmail author
  • Phong Tran
  • Camdon Fary


Prostheses made from metal alloys have been successfully utilised within medicine for hundreds of years. Among these, cobalt-chromium (Co-Cr) alloys have seen extensive use in orthopaedic applications, including hip and knee joint replacements. Despite all the research and development that has gone into optimising these implants, however, a small proportion of them ultimately fail and require revision after a number of years. While the reasons for this are diverse, the reaction of metal nanoparticles to human tissues is a recognised complication of implanting these alloys within the body. This chapter explores the orthopaedic use of metal alloys within the human body as well as the local and systemic effects of these metal nanoparticles, with emphasis on large-diameter metal-on-metal hip replacements.


Metal-on-metal Hip arthroplasty Hip replacement Metallosis Pseudotumour Aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) 



Aseptic lymphocyte-dominated vasculitis-associated lesion


Adverse reaction(s) to metal debris






Metal artefact reduction sequence






Magnetic resonance imaging


Scientific committee on emerging and newly identified health risks


Total hip arthroplasty


Total hip replacement(s)


  1. Apel W, Stark D, Stark A, O’hagan S, Ling J. Cobalt-chromium toxic retinopathy case study. Doc Ophthalmol. 2013;126:69–78.CrossRefPubMedGoogle Scholar
  2. Australian Orthopaedic Association National Joint Replacement Registry. Hip, knee and shoulder arthroplasty annual report 2016. 2016a.
  3. Australian Orthopaedic Association National Joint Replacement Registry. Metal on metal bearing surface conventional hip arthroplasty supplement report 2016. 2016b.
  4. Bosker BH, Ettema HB, Van Rossum M, Boomsma MF, Kollen BJ, Maas M, Verheyen CC. Pseudotumor formation and serum ions after large head metal-on-metal stemmed total hip replacement. Risk factors, time course and revisions in 706 hips. Arch Orthop Trauma Surg. 2015;135:417–25.CrossRefPubMedGoogle Scholar
  5. Bradberry SM, Wilkinson JM, Ferner RE. Systemic toxicity related to metal hip prostheses. Clin Toxicol (Phila). 2014;52:837–47.CrossRefGoogle Scholar
  6. Brown C, Fisher J, Ingham E. Biological effects of clinically relevant wear particles from metal-on-metal hip prostheses. Proc Inst Mech Eng H. 2006;220:355–69.CrossRefPubMedGoogle Scholar
  7. Campbell P, Ebramzadeh E, Nelson S, Takamura K, De Smet K, Amstutz HC. Histological features of pseudotumor-like tissues from metal-on-metal hips. Clin Orthop Relat Res. 2010;468:2321–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Catalani S, Rizzetti MC, Padovani A, Apostoli P. Neurotoxicity of cobalt. Hum Exp Toxicol. 2012;31:421–37.CrossRefPubMedGoogle Scholar
  9. Cheung AC, Banerjee S, Cherian JJ, Wong F, Butany J, Gilbert C, Overgaard C, Syed K, Zywiel MG, Jacobs JJ, Mont MA. Systemic cobalt toxicity from total hip arthroplasties: review of a rare condition part 1 – history, mechanism, measurements, and pathophysiology. Bone Joint J. 2016;98-B:6–13.CrossRefPubMedGoogle Scholar
  10. Cooper HJ, Urban RM, Wixson RL, Meneghini RM, Jacobs JJ. Adverse local tissue reaction arising from corrosion at the femoral neck-body junction in a dual-taper stem with a cobalt-chromium modular neck. J Bone Joint Surg Am. 2013;95:865–72.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cuckler JM. The rationale for metal-on-metal total hip arthroplasty. Clin Orthop Relat Res. 2005;441:132–6.CrossRefPubMedGoogle Scholar
  12. De Haan R, Campbell PA, Su EP, De Smet KA. Revision of metal-on-metal resurfacing arthroplasty of the hip: the influence of malpositioning of the components. J Bone Joint Surg (Br). 2008;90:1158–63.CrossRefGoogle Scholar
  13. Devlin JJ, Pomerleau AC, Brent J, Morgan BW, Deitchman S, Schwartz M. Clinical features, testing, and management of patients with suspected prosthetic hip-associated cobalt toxicity: a systematic review of cases. J Med Toxicol. 2013;9:405–15.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Doorn PF, Campbell PA, Worrall J, Benya PD, Mckellop HA, Amstutz HC. Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J Biomed Mater Res. 1998;42:103–11.CrossRefPubMedGoogle Scholar
  15. Drummond J, Tran P, Fary C. Metal-on-metal hip arthroplasty: a review of adverse reactions and patient management. J Funct Biomater. 2015;6:486–99.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fehring KA, Fehring TK. Modes of failure in metal-on-metal total hip arthroplasty. Orthop Clin North Am. 2015;46:185–92.CrossRefPubMedGoogle Scholar
  17. Gessner BD, Steck T, Woelber E, Tower SSA. systematic review of systemic cobaltism after wear or corrosion of chrome-cobalt hip implants. J Patient Saf. 2015;00(0):1–8. Scholar
  18. Giampreti A, Lonati D, Locatelli CA. Chelation in suspected prosthetic hip-associated cobalt toxicity. Can J Cardiol. 2014;30(465):e13.Google Scholar
  19. Gilbert JL, Buckley CA, Jacobs JJ. In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion, and alloy coupling. J Biomed Mater Res. 1993;27:1533–44.CrossRefPubMedGoogle Scholar
  20. Gillam MH, Pratt NL, Inacio MC, Roughead EE, Shakib S, Nicholls SJ, Graves SE. Heart failure after conventional metal-on-metal hip replacements. Acta Orthop. 2017;88:2–9.CrossRefPubMedGoogle Scholar
  21. Goldberg JR, Gilbert JL, Jacobs JJ, Bauer TW, Paprosky W, Leurgans S. A multicenter retrieval study of the taper interfaces of modular hip prostheses. Clin Orthop Relat Res. 2002:149–61.Google Scholar
  22. Gunther KP, Lutzner J, Hannemann F, Schmitt J, Kirschner S, Goronzy J, Stiehler M, Lohmann C, Hartmann A. Update on metal-on-metal hip joints. Orthopade. 2013;42:373–87. quiz 388–9CrossRefPubMedGoogle Scholar
  23. Hailer NP, Bengtsson M, Lundberg C, Milbrink J. High metal ion levels after use of the ASR device correlate with development of pseudotumors and T cell activation. Clin Orthop Relat Res. 2014;472:953–61.CrossRefPubMedGoogle Scholar
  24. Ikeda T, Takahashi K, Kabata T, Sakagoshi D, Tomita K, Yamada M. Polyneuropathy caused by cobalt-chromium metallosis after total hip replacement. Muscle Nerve. 2010;42:140–3.CrossRefPubMedGoogle Scholar
  25. Knight SR, Aujla R, Biswas SP. Total hip arthroplasty – over 100 years of operative history. Orthop Rev (Pavia). 2011;3:e16.CrossRefGoogle Scholar
  26. Langton DJ, Jameson SS, Joyce TJ, Hallab NJ, Natu S, Nargol AV. Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: a consequence of excess wear. J Bone Joint Surg (Br). 2010;92:38–46.CrossRefGoogle Scholar
  27. Langton DJ, Joyce TJ, Jameson SS, Lord J, Van Orsouw M, Holland JP, Nargol AV, De Smet KA. Adverse reaction to metal debris following hip resurfacing: the influence of component type, orientation and volumetric wear. J Bone Joint Surg (Br). 2011;93:164–71.CrossRefGoogle Scholar
  28. Langton DJ, Sidaginamale R, Lord JK, Nargol AV, Joyce TJ. Taper junction failure in large-diameter metal-on-metal bearings. Bone Joint Res. 2012;1:56–63.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mahendra G, Pandit H, Kliskey K, Murray D, Gill HS, Athanasou N. Necrotic and inflammatory changes in metal-on-metal resurfacing hip arthroplasties. Acta Orthop. 2009;80:653–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Matharu GS, Pynsent PB, Dunlop DJ. Revision of metal-on-metal hip replacements and resurfacings for adverse reaction to metal debris: a systematic review of outcomes. Hip Int. 2014;24:311–20.CrossRefPubMedGoogle Scholar
  31. Mistry JB, Chughtai M, Elmallah RK, Diedrich A, Le S, Thomas M, Mont MA. Trunnionosis in total hip arthroplasty: a review. J Orthop Traumatol. 2016;17:1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Moniz S, Hodgkinson S, Yates P. Cardiac transplant due to metal toxicity associated with hip arthroplasty. Arthroplasty Today. 2017. (Article in press).Google Scholar
  33. National Joint Registry for England Wales and Northern Ireland. 13th annual report. (2016). Annual Report/07950 NJR Annual Report 2016 ONLINE REPORT.pdf.
  34. Paustenbach DJ, Tvermoes BE, Unice KM, Finley BL, Kerger BD. A review of the health hazards posed by cobalt. Crit Rev Toxicol. 2013;43:316–62.CrossRefPubMedGoogle Scholar
  35. Posada OM, Tate RJ, Grant MH. Toxicity of cobalt-chromium nanoparticles released from a resurfacing hip implant and cobalt ions on primary human lymphocytes in vitro. J Appl Toxicol. 2015;35:614–22.CrossRefPubMedGoogle Scholar
  36. Rona G, Chappel CI. Pathogenesis and pathology of cobalt cardiomyopathy. Recent Adv Stud Cardiac Struct Metab. 1973;2:407–22.PubMedGoogle Scholar
  37. Rousseau MC, Straif K, Siemiatycki J. IARC carcinogen update. Environ Health Perspect. 2005;113:A580–1.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schmalzried TP, Shepherd EF, Dorey FJ, Jackson WO, Dela Rosa M, Fa'vae F, Mckellop HA, Mcclung CD, Martell J, Moreland JR, Amstutz HC. The John Charnley Award. Wear is a function of use, not time. Clin Orthop Relat Res. 2000;381:36–46.CrossRefGoogle Scholar
  39. Scientific Committee on Emerging Newly Identified Health Risks. Opinion on: the safety of metal-on-metal joint replacements with a particular focus on hip implants. 2014.
  40. Siddiqui IA, Sabah SA, Satchithananda K, Lim AK, Cro S, Henckel J, Skinner JA, Hart AJ. A comparison of the diagnostic accuracy of MARS MRI and ultrasound of the painful metal-on-metal hip arthroplasty. Acta Orthop. 2014;85:375–82.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Smith IC, Carson BL. Trace metals in the environment. Volume 6: cobalt an appraisal of environmental exposure. Ann Arbor: Ann Arbor Science Publishers; 1981.Google Scholar
  42. Smith AJ, Dieppe P, Porter M, Blom AW, National Joint Registry Of E and Wales. Risk of cancer in first seven years after metal-on-metal hip replacement compared with other bearings and general population: linkage study between the National Joint Registry of England and Wales and hospital episode statistics. BMJ. 2012;344:e2383.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Underwood R J, Zografos A, Sayles R S, Hart A, Cann P. Edge loading in metal-on-metal hips: low clearance is a new risk factor. Proc Inst Mech Eng H. 2012;226:217–26.Google Scholar
  44. Van Der Weegen W, Smolders JM, Sijbesma T, Hoekstra HJ, Brakel K, Van Susante JL. High incidence of pseudotumours after hip resurfacing even in low risk patients; results from an intensified MRI screening protocol. Hip Int. 2013;23:243–9.CrossRefPubMedGoogle Scholar
  45. Visuri T, Pukkala E, Paavolainen P, Pulkkinen P, Riska EB. Cancer risk after metal on metal and polyethylene on metal total hip arthroplasty. Clin Orthop Relat Res. 1996:S280–9.Google Scholar
  46. Watters TS, Cardona DM, Menon KS, Vinson EN, Bolognesi MP, Dodd LG. Aseptic lymphocyte-dominated vasculitis-associated lesion: a clinicopathologic review of an underrecognized cause of prosthetic failure. Am J Clin Pathol. 2010;134:886–93.CrossRefPubMedGoogle Scholar
  47. Willert HG, Buchhorn GH, Fayyazi A, Flury R, Windler M, Koster G, Lohmann CH. Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J Bone Joint Surg Am. 2005;87:28–36.PubMedGoogle Scholar
  48. Williams DH, Greidanus NV, Masri BA, Duncan CP, Garbuz DS. Prevalence of pseudotumor in asymptomatic patients after metal-on-metal hip arthroplasty. J Bone Joint Surg Am. 2011;93:2164–71.CrossRefPubMedGoogle Scholar
  49. Zywiel MG, Cherian JJ, Banerjee S, Cheung AC, Wong F, Butany J, Gilbert C, Overgaard C, Syed K, Jacobs JJ, Mont MA. Systemic cobalt toxicity from total hip arthroplasties: review of a rare condition part 2. Measurement, risk factors, and step-wise approach to treatment. Bone Joint J. 2016;98-B:14–20.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of OrthopaedicsWestern HealthMelbourneAustralia
  2. 2.Australian Institute for Musculoskeletal ScienceMelbourneAustralia
  3. 3.Epworth Musculoskeletal InstituteMelbourneAustralia

Personalised recommendations