Advertisement

Establishment and Use of Injectable Human Embryonic Stem Cells for Clinical Application

  • Geeta Shroff
Chapter

Abstract

Though the ethical controversy regarding the origins of human embryonic stem cells (hESCs) remains, the vast potential that hESCs hold in curing the worst afflictions of mankind can be debated but not denied. The chapter describes the evolution of an hESC line first isolated in the year 1999 for potential therapeutic use. For the last 13 years, these hESC lines have been transplanted/injected in patients with various incurable conditions like spinal cord injury, cerebral palsy, Parkinson's disease, multiple sclerosis, Lyme disease, visual impairment, Duchenne muscular dystrophy, Friedrich ataxia, brain injury, diabetes, hepatitis, and many more. The chapter shows that over 1400 patients suffering from a range of different conditions and not benefitting from traditional therapies have not had a detectable teratoma or immune reaction.

References

  1. ASIA/IMSOP. 1996. American Spinal Injury Association/International Medical Society of Paraplegia (ASIA/IMSOP) International Standards for Neurological and Functional Classification of Spinal Cord Injury patients (Revised). Chicago, IL: American Spinal Injury Association.Google Scholar
  2. Bergua, F.J.B., J.R.T. Huamán, S.M. Castilla, F.M. Bermudo, B.S. Escoms, et al. n.d. Patent: Method for Differentiation of Pluripotent Stem Cells into Definitive Endoderm Cells.Google Scholar
  3. Bjorklund, L.M., R. Sánchez-Pernaute, S. Chung, T. Andersson, I.Y. Chen, McNaught KS, and A.L. Brownell. 2002. Embryonic Stem Cells Develop into Functional Dopaminergic Neurons after Transplantation in a Parkinson Rat Model. Proceedings of the National Academy of Sciences of the United States of America 99: 2344–2349.CrossRefGoogle Scholar
  4. Bracken, M.B. 2012. Steroids for Acute Spinal Cord Injury. Cochrane Database of Systematic Reviews 1: CD001046.Google Scholar
  5. Bracken, M.B., M.J. Shepard, W.F. Collins, T.R. Holford, W. Young, D.S. Baskin, H.M. Eisenberg, et al. 1990. A Randomized, Controlled Trial of Methylprednisolone or Naloxone in the Treatment of Acute Spinal-cord Injury. Results of the Sec- ond National Acute Spinal Cord Injury Study. The New England Journal of Medicine 322 (20): 1405–1411.CrossRefGoogle Scholar
  6. Bretzner, F., F. Gilbert, F. Baylis, and R.M. Brownstone. 2011. Target Populations for First-in-Human Embryonic Stem Cell Research in Spinal Cord Injury. Cell Stem Cell 8 (5): 468–475.CrossRefGoogle Scholar
  7. Crawford, J.S. 1980. Experiences with Epidural Blood Patch. Anaesthesia 35: 513–515.CrossRefGoogle Scholar
  8. Dalbayrak, S., O. Yaman, and T. Yilmaz. 2015. Current and Future Surgery Strategies for SCI. World Journal of Orthopedics 6 (1): 34–41.CrossRefGoogle Scholar
  9. Erceg, S., Sergio Laínez, Mohammad Ronaghi, Petra Stojkovic, Maria Amparo Pérez-Aragó, Victoria Moreno-Manzano, Rubén Moreno-Palanques, Rosa Planells-Cases, and Miodrag Stojkovic. 2008. Differentiation of Human Embryonic Stem Cells to Regional Specific Neural Precursors in Chemically Defined Medium Conditions. PLoS One 3: e2122.CrossRefGoogle Scholar
  10. Freedman, J.M., D.K. Li, K. Drasner, M.C. Jaskela, B. Larsen, and S. Wi. 1998. Transient Neurologic Symptoms after Spinal Anesthesia: An Epidemiologic Study of 1,863 Patients. Anesthesiology 89: 633–641.CrossRefGoogle Scholar
  11. Grossman, R.G., R.F. Frankowski, K.D. Burau, E.G. Toups, J.W. Crommett, M.M. Johnson, M.G. Fehlings, et al. 2012. Incidence and Severity of Acute Complications After Spinal Cord Injury. Journal of Neurosurgery. Spine 17 (1 Suppl): 119–128.CrossRefGoogle Scholar
  12. Gupta, N., J.M. Solomon, and K. Raja. 2008. Demographic Characteristics of Individuals with Paraplegia in India—A Survey. Indian Journal of Physiotherapy and Occupational Therapy 2: 24–27.Google Scholar
  13. Hampl, K.F., M.C. Schneider, W. Ummenhofer, and J. Drewe. 1995. Transient Neurologic Symptoms After Spinal Anesthesia. Anesthesia and Analgesia 81: 1148–1153.Google Scholar
  14. Kang, K.S., S.W. Kim, Y.H. Oh, J.W. Yu, K.Y. Kim, H.K. Park, C.H. Song, and H. Han. 2005. A 37-year-old Spinal Cord-Injured Female Patient, Transplanted of Multipotent Stem Cells from Human UC Blood, with Improved Sensory Perception and Mobility, Both Functionally and Morphologically: A Case Study. Cytotherapy 7: 368–373.CrossRefGoogle Scholar
  15. Keirstead, H.S., G. Nistor, G. Bernal, M. Totoiu, F. Cloutier, K. Sharp, and O. Steward. 2005. Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cell Transplants Remyelinate and Restore Locomotion after Spinal Cord Injury. The Journal of Neuroscience 25: 4694–4705.CrossRefGoogle Scholar
  16. Kerr, D.A., J. Llado, M.J. Shamblott, N.J. Maragakis, D.N. Irani, T.O. Crawford, C. Krishnan, et al. 2003. Human Embryonic Germ Cell Derivatives Facilitate Motor Recovery of Rats with Diffuse Motor Neuron Injury. The Journal of Neuroscience 23 (12): 5131–5140.Google Scholar
  17. Kirshblum, S., S. Millis, W. McKinley, and D. Tulsky. 2004. Late Neurologic Recovery after Traumatic Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation 85: 1811–1817.CrossRefGoogle Scholar
  18. Kirshblum, S.C., S.P. Burns, F. Biering-Sorensen, W. Donovan, D.E. Graves, Amitabh Jha, Mark Johansen, et al. 2011. International Standards for Neurological Classification of Spinal Cord Injury (Revised 2011). The Journal of Spinal Cord Medicine 34: 535–546.CrossRefGoogle Scholar
  19. Lee, H., G.A. Shamy, Y. Elkabetz, C.M. Schofield, N.L. Harrsion, G. Panagiotakos, N.D. Socci, V. Tabar, and L. Studer. 2007. Directed Differentiation and Transplantation of Human Embryonic Stem Cell-derived Motoneurons. Stem Cells 25: 1931–1939.CrossRefGoogle Scholar
  20. Leuty, R. 2014. Stem Cell Trial for Spinal Cord Injuries Cleared by FDA. http://www.bizjournals.com/sanfrancisco/blog/biotech/2014/08/embryonic-stem-cells-asterias-geron-spinal-cord.html. Accessed 17 September 2014.
  21. Li, Y.W., L. Ma, B. Sui, C.H. Cao, and X.D. Liu. 2014. Etomidate with or Without Flumazenil Anesthesia for Stem Cell Transplantation in Autistic Children. Drug Metabolism and Drug Interactions 29: 47–51.CrossRefGoogle Scholar
  22. Lima, C., P. Escada, J. Pratas-Vital, C. Branco, C.A. Arcangeli, G. Lazzeri, C.A. Maia, et al. 2010. Olfactory Mucosal Autografts and Rehabilitation for Chronic Traumatic Spinal Cord Injury. Neurorehabilitation and Neural Repair 24: 10–22.CrossRefGoogle Scholar
  23. Lukovic, D., V. Moreno Manzano, M. Stojkovic, S.S. Bhattacharya, and S. Erceg. 2012. Concise Review: Human Pluripotent Stem Cells in the Treatment of Spinal Cord Injury. Stem Cells 30: 1787–1792.CrossRefGoogle Scholar
  24. Lukovic, D., M. Stojkovic, V. Moreno-Manzano, S.S. Bhattacharya, and S. Erceg. 2014. Perspectives and Future Directions of Human Pluripotent Stem Cell-based Therapies: Lessons from Geron’s Clinical Trial for Spinal Cord Injury. Stem Cells and Development 23: 1–4.CrossRefGoogle Scholar
  25. Mackay-Sim, A., F. Feron, J. Cochrane, L. Bassingthwaighte, C. Bayliss, W. Davies, P. Fronek, et al. 2008. Autologous Olfactory Ensheathing Cell Transplantation in Human Paraplegia: A 3-year Clinical Trial. Brain 131 (Pt 9): 2376–2386.CrossRefGoogle Scholar
  26. McDonald, J.W., X.Z. Liu, Y. Qu, S. Liu, S.K. Mickey, D. Turetsky, D.I. Gottlieb, and D.W. Choi. 1999. Transplanted Embryonic Stem Cells Survive, Differentiate and Promote Recovery in Injured Rat Spinal Cord. Nature Medicine 5: 1410–1412.CrossRefGoogle Scholar
  27. Negrin, R.S. 2015. Patient Information: Bone Marrow Transplantation (Stem Cell Transplantation). Beyond the Basics.Google Scholar
  28. Paralysis, Paraplegia, and Quadriplegia. MD guidelines. 2015. http://www.mdguidelines.com/paralysis-paraplegia-and-quadriplegia. Accessed 24 December 2015.
  29. Park, H.C., Y.S. Shim, Y. Ha, S.H. Yoon, S.R. Park, B.H. Choi, and H.S. Park. 2005. Treatment of Complete Spinal Cord Injury Patients by Autologous Bone Marrow Cell Transplantation and Administration of Granulocyte-Macrophage Colony Stimulating Factor. Tissue Engineering 11: 913–922.CrossRefGoogle Scholar
  30. Rahimi-Movaghar, V., M.K. Sayyah, H. Akbari, R. Khorramirouz, M.R. Rasouli, M. Moradi-Lakeh, F. Shokraneh, and A.R. Vaccaro. 2013. Epidemiology of Traumatic Spinal Cord Injury in Developing Countries: A Systematic Review. Neuroepidemiology 41: 65–85.CrossRefGoogle Scholar
  31. Ronaghi, M., S. Erceg, V. Moreno-Manzano, and M. Stojkovic. 2010. Challenges of Stem Cell Therapy for Spinal Cord Injury: Human Embryonic Stem Cells, Endogenous Neural Stem Cells, or Induced Pluripotent Stem Cells? Stem Cells 28: 93–99.Google Scholar
  32. Rossi, S.L., G. Nistor, T. Wyatt, H.Z. Yin, A.J. Poole, J.H. Weiss, M.J. Gardener, et al. 2010. Histological and Functional Benefit Following Transplantation of Motor Neuron Progenitors to the Injured Rat Spinal Cord. PLoS One 5 (7): e11852.CrossRefGoogle Scholar
  33. Schneider, M., T. Ettlin, M. Kaufmann, P. Schumacher, A. Urwyler, K. Hampl, and A. von Hochstetter. 1993. Transient Neurologic Toxicity After Hyperbaric Subarachnoid Anesthesia with 5% Lidocaine. Anesthesia and Analgesia 76: 1154–1157.CrossRefGoogle Scholar
  34. Sharma, A., H. Sane, N. Gokulchandran, P. Badhe, P. Kulkarni, and A. Paranjape. 2014. Stem Cell Therapy for Cerebral Palsy – A Novel Option. In Cerebral Palsy – Challenges for the Future. Rijeka, Croatia: InTech. 32.Google Scholar
  35. Sharp, J., J. Frame, M. Siegenthaler, G. Nistor, and H.S. Keirstead. 2010. Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cell Transplants Improve Recovery After Cervical Spinal Cord Injury. Stem Cells 28 (1): 152–163.Google Scholar
  36. Shroff, G. 2005. Human Embronic Stem Cells—A Revolution in Therapeutics. New Delhi: NuTech Mediworld. isbn:81-7525-660-5.Google Scholar
  37. ———. 2015a. Establishment and Characterization of a Neuronal Cell Line Derived from a 2-Cell Stage Human Embryo: Clinically Tested Cell-based Therapy for Neurological Disorders. International Journal of Recent Scientific Research 6 (4): 3730–3738.Google Scholar
  38. ———. 2015b. A Novel Approach of Human Embryonic Stem Cells Therapy in Treatment of Friedreich’s Ataxia. International Journal of Case Reports and Images 6 (5): 261–266.CrossRefGoogle Scholar
  39. ———. 2015c. Human Embryonic Stem Cells in the Treatment of Spinocerebellar Ataxia: A Case Series. Journal of Clinical Case Reports 4: 474.Google Scholar
  40. ———. 2015d. Treatment of Lyme Disease with Human Embryonic Stem Cells: A Case Series. Journal of Neuroinfectious Diseases 6: 167.Google Scholar
  41. Shroff, G., and J.K. Barthakur. 2015. Safety of Human Embryonic Stem Cells in Patients with Terminal/Incurable Conditions—A Retrospective Analysis. Annals of Neurosciences 22: 132–138.CrossRefGoogle Scholar
  42. Shroff, G., and L. Das. 2014. Human Embryonic Stem Cell Therapy in Cerebral Palsy Children with Cortical Visual Impairment: A Case Series of 40, Patients. Journal of Cell Science and Therapy 5: 189.Google Scholar
  43. Shroff, G., and R. Gupta. 2015. Human Embryonic Stem Cells in the Treatment of Patients with Spinal Cord Injury. Annals of Neurosciences 22 (4): 208–216.CrossRefGoogle Scholar
  44. Shroff, G., A. Gupta, and J.K. Barthakur. 2014. Therapeutic Potential of Human Embryonic Stem Cell Transplantation in Patients with Cerebral Palsy. Journal of Translational Medicine 12: 318.CrossRefGoogle Scholar
  45. Shroff, G., Dipin Thakur, Varun Dhingra, Deepak Singh Baroli, Deepanshu Khatri, and Rahul Dev Gautam. 2016. Role of Physiotherapy in the Mobilization of Patients with Spinal Cord Injury Undergoing Human Embryonic Stem Cells Transplantation. Clinical and Translational Medicine 5 (41): 19.Google Scholar
  46. Srivastava, U., A. Kumar, S. Saxena, R. Saxena, N.K. Gandhi, and P. Salar. 2004. Spinal Anaesthesia with Lignocaine and Fentanyl. Indian Journal of Anaesthesia 48: 121–123.Google Scholar
  47. Ware, C.B., A.M. Nelson, B. Mecham, J. Hesson, W. Zhou, E.C. Jonlin, A.J. Jimenez-Caliani, et al. 2014. Derivation of Naive Human Embryonic Stem Cells. Proceedings of the National Academy of Sciences of the United States of America 111: 4484–4489.CrossRefGoogle Scholar
  48. White, P.F., H. Kehlet, J.M. Neal, T. Schricker, D.B. Carr, F. Carli, and Fast-Track Surgery Study Group. 2007. The Role of the Anesthesiologist in Fast-track Surgery: From Ultimodal Analgesia to Perioperative Medical Care. Anesthesia and Analgesia 104: 1380–1396.CrossRefGoogle Scholar
  49. Willerth, S.M., and S.E. Sakiyama-Elbert. 2008. Cell Therapy for Spinal Cord Regeneration. Advanced Drug Delivery Reviews 60: 263–276. Epidural: The Indications and Contraindications for Epidural Nalgesia.Google Scholar
  50. World Medical Association Declaration of Helsinki.Google Scholar
  51. Yoon, S.H., Y.S. Shim, Y.H. Park, J.K. Chung, J.H. Nam, M.O. Kim, H.C. Park, et al. 2007. Complete Spinal Cord Injury Treatment Using Autologous Bone Marrow Cell Transplantation and Bone Marrow Stimulation with Granulocyte Macrophagecolony Stimulating Factor: Phase I/II Clinical Trial. Stem Cells 25 (8): 2066–2073.CrossRefGoogle Scholar
  52. Yosaitis, J., J. Manley, L. Johnson, and J. Plotkin. 2005. The Role of the Anesthesiologist as an Integral Member of the Transplant Team. HPB: The Official Journal of the International Hepato Pancreato Biliary Association 7: 180–182.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Geeta Shroff
    • 1
  1. 1.Nutech MediworldNew DelhiIndia

Personalised recommendations