Advertisement

Functional Graph Revisited: Updates on (Second) Preimage Attacks on Hash Combiners

  • Zhenzhen Bao
  • Lei Wang
  • Jian Guo
  • Dawu Gu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10402)

Abstract

This paper studies functional-graph-based (second) preimage attacks against hash combiners. By exploiting more properties of functional graph, we find an improved preimage attack against the XOR combiner with a complexity of \(2^{5n/8}\), while the previous best-known complexity is \(2^{2n/3}\). Moreover, we find the first generic second-preimage attack on Zipper hash with an optimal complexity of \(2^{3n/5}\).

Keywords

Hash combiner Functional graph XOR combiner Zipper hash (Second) preimage attack 

Notes

Acknowledgments

Lei Wang and Dawu Gu are sponsored by National Natural Science Foundation of China (61602302, 61472250, 61672347), Natural Science Foundation of Shanghai (16ZR1416400), Shanghai Excellent Academic Leader Funds (16XD1401300). The authors would like to thank the anonymous reviewers of CRYPTO 2017 for their comments and suggestions.

References

  1. 1.
    Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.): ICALP 2008. LNCS, vol. 5126. Springer, Heidelberg (2008)Google Scholar
  2. 2.
    Allen, C., Dierks, T.: The TLS Protocol Version 1.0. RFC 2246, January 1999. https://rfc-editor.org/rfc/rfc2246.txt
  3. 3.
    Andreeva, E., Bouillaguet, C., Dunkelman, O., Kelsey, J.: Herding, second preimage and trojan message attacks beyond Merkle-Damgård. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 393–414. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-05445-7_25 CrossRefGoogle Scholar
  4. 4.
    Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435. Springer, New York (1990)zbMATHGoogle Scholar
  5. 5.
    Chen, S., Jin, C.: A second preimage attack on Zipper hash. Secur. Commun. Netw. 8(16), 2860–2866 (2015)CrossRefGoogle Scholar
  6. 6.
    Damgård, I.: A design principle for hash functions. In: Brassard [4], pp. 416–427Google Scholar
  7. 7.
    Dinur, I.: New attacks on the concatenation and XOR hash combiners. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS, vol. 9665, pp. 484–508. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49890-3_19 CrossRefGoogle Scholar
  8. 8.
    Dinur, I., Leurent, G.: Improved generic attacks against hash-based MACs and HAIFA. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 149–168. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44371-2_9 CrossRefGoogle Scholar
  9. 9.
    Fischlin, M., Lehmann, A.: Security-amplifying combiners for collision-resistant hash functions. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 224–243. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74143-5_13 CrossRefGoogle Scholar
  10. 10.
    Fischlin, M., Lehmann, A.: Multi-property preserving combiners for hash functions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 375–392. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78524-8_21 CrossRefGoogle Scholar
  11. 11.
    Fischlin, M., Lehmann, A., Pietrzak, K.: Robust multi-property combiners for hash functions revisited. In: Aceto et al., [1], pp. 655–666Google Scholar
  12. 12.
    Fischlin, M., Lehmann, A., Pietrzak, K.: Robust multi-property combiners for hash functions. J. Cryptol. 27(3), 397–428 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 329–354. Springer, Heidelberg (1990). doi: 10.1007/3-540-46885-4_34 CrossRefGoogle Scholar
  14. 14.
    Freier, A.O., Karlton, P., Kocher, P.C.: The Secure Sockets Layer (SSL) Protocol Version 3.0. RFC 6101, August 2011. https://rfc-editor.org/rfc/rfc6101.txt
  15. 15.
    Guo, J., Peyrin, T., Sasaki, Y., Wang, L.: Updates on generic attacks against HMAC and NMAC. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 131–148. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44371-2_8 CrossRefGoogle Scholar
  16. 16.
    Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory 26(4), 401–406 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hoch, J.J., Shamir, A.: Breaking the ICE – finding multicollisions in iterated concatenated and expanded (ICE) hash functions. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 179–194. Springer, Heidelberg (2006). doi: 10.1007/11799313_12 CrossRefGoogle Scholar
  18. 18.
    Hoch, J.J., Shamir, A.: On the strength of the concatenated hash combiner when all the hash functions are weak. In: Aceto et al. [1], pp. 616–630Google Scholar
  19. 19.
    Jha, A., Nandi, M.: Some Cryptanalytic Results on Zipper Hash and Concatenated Hash. Cryptology ePrint Archive, Report 2015/973 (2015). http://eprint.iacr.org/2015/973
  20. 20.
    Joux, A.: Multicollisions in iterated hash functions. application to cascaded constructions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28628-8_19 CrossRefGoogle Scholar
  21. 21.
    Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less than 2n work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 474–490. Springer, Heidelberg (2005). doi: 10.1007/11426639_28 CrossRefGoogle Scholar
  22. 22.
    Lehmann, A.: On the security of hash function combiners. Ph.D. thesis, Darmstadt University of Technology (2010)Google Scholar
  23. 23.
    Leurent, G., Peyrin, T., Wang, L.: New generic attacks against hash-based MACs. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 1–20. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-42045-0_1 CrossRefGoogle Scholar
  24. 24.
    Leurent, G., Wang, L.: The sum can be weaker than each part. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 345–367. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46800-5_14 Google Scholar
  25. 25.
    Liskov, M.: Constructing an ideal hash function from weak ideal compression functions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356, pp. 358–375. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74462-7_25 CrossRefGoogle Scholar
  26. 26.
    Mendel, F., Rechberger, C., Schläffer, M.: MD5 is weaker than weak: attacks on concatenated combiners. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 144–161. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10366-7_9 CrossRefGoogle Scholar
  27. 27.
    Merkle, R.C.: One way hash functions and DES. In: Brassard [4], pp. 428–446Google Scholar
  28. 28.
    Nandi, M., Stinson, D.R.: Multicollision attacks on some generalized sequential hash functions. IEEE Trans. Inf. Theory 53(2), 759–767 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic applications. J. Cryptol. 12(1), 1–28 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Perrin, L., Khovratovich, D.: Collision spectrum, entropy loss, T-sponges, and cryptanalysis of GLUON-64. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 82–103. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46706-0_5 Google Scholar
  31. 31.
    Peyrin, T., Sasaki, Y., Wang, L.: Generic related-key attacks for HMAC. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 580–597. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34961-4_35 CrossRefGoogle Scholar
  32. 32.
    Peyrin, T., Wang, L.: Generic universal forgery attack on iterative hash-based MACs. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 147–164. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_9 CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  1. 1.Shanghai Jiao Tong UniversityShanghaiChina
  2. 2.Nanyang Technological UniversitySingaporeSingapore
  3. 3.State Key Laboratory of Information SecurityInstitute of Information Engineering, Chinese Academy of SciencesBeijingChina
  4. 4.Westone Cryptologic Research CenterBeijingChina

Personalised recommendations