Advertisement

Kurosawa-Desmedt Meets Tight Security

  • Romain GayEmail author
  • Dennis Hofheinz
  • Lisa Kohl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10403)

Abstract

At EUROCRYPT 2016, Gay et al. presented the first pairing-free public-key encryption (PKE) scheme with an almost tight security reduction to a standard assumption. Their scheme is competitive in efficiency with state-of-the art PKE schemes and has very compact ciphertexts (of three group elements), but suffers from a large public key (of about \(200\) group elements).

In this work, we present an improved pairing-free PKE scheme with an almost tight security reduction to the Decisional Diffie-Hellman assumption, small ciphertexts (of three group elements), and small public keys (of six group elements). Compared to the work of Gay et al., our scheme thus has a considerably smaller public key and comparable other characteristics, although our encryption and decryption algorithms are somewhat less efficient.

Technically, our scheme borrows ideas both from the work of Gay et al. and from a recent work of Hofheinz (EUROCRYPT, 2017). The core technical novelty of our work is an efficient and compact designated-verifier proof system for an OR-like language. We show that adding such an OR-proof to the ciphertext of the state-of-the-art PKE scheme from Kurosawa and Desmedt enables a tight security reduction.

Keywords

Public key encryption Tight security 

References

  1. 1.
    Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time signatures: tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 312–331. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36362-7_20 CrossRefGoogle Scholar
  2. 2.
    Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based encryption with almost tight security. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 521–549. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_22 CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting: security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000). doi: 10.1007/3-540-45539-6_18 CrossRefGoogle Scholar
  4. 4.
    Blazy, O., Kiltz, E., Pan, J.: (Hierarchical) identity-based encryption from affine message authentication. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 408–425. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44371-2_23 CrossRefGoogle Scholar
  5. 5.
    Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 435–460. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_25 CrossRefGoogle Scholar
  6. 6.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi: 10.1007/3-540-46035-7_4 CrossRefGoogle Scholar
  8. 8.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_8 CrossRefGoogle Scholar
  9. 9.
    Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49890-3_1 CrossRefGoogle Scholar
  10. 10.
    Gong, J., Chen, J., Dong, X., Cao, Z., Tang, S.: Extended nested dual system groups, revisited. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 133–163. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49384-7_6 CrossRefGoogle Scholar
  11. 11.
    Hofheinz, D.: Adaptive partitioning. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 489–518. Springer, Cham (2017). doi: 10.1007/978-3-319-56617-7_17 CrossRefGoogle Scholar
  12. 12.
    Hofheinz, D.: Algebraic partitioning: fully compact and (almost) tightly secure cryptography. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 251–281. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49096-9_11 CrossRefGoogle Scholar
  13. 13.
    Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_35 CrossRefGoogle Scholar
  14. 14.
    Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-74143-5_31 CrossRefGoogle Scholar
  15. 15.
    Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with (almost) tight security in the multi-instance, multi-ciphertext setting. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 799–822. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46447-2_36 Google Scholar
  16. 16.
    Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions (extended abstracts). In: 21st ACM STOC, pp. 12–24. ACM Press, May 1989Google Scholar
  17. 17.
    Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28628-8_26 CrossRefGoogle Scholar
  18. 18.
    Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. J. Cryptol. 14(4), 255–293 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Libert, B., Joye, M., Yung, M., Peters, T.: Concise multi-challenge CCA-secure encryption and signatures with almost tight security. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 1–21. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45608-8_1 Google Scholar
  20. 20.
    Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 681–707. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_28 CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  1. 1.Département d’informatique de l’ENS École normale supérieure, CNRS, PSL Research UniversityParisFrance
  2. 2.INRIAParisFrance
  3. 3.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations