Advertisement

Anonymous Attestation with Subverted TPMs

  • Jan Camenisch
  • Manu Drijvers
  • Anja Lehmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10403)

Abstract

Various sources have revealed that cryptographic standards and components have been subverted to undermine the security of users, reigniting research on means to achieve security in presence of such subverted components. In this paper we consider direct anonymous attestation (DAA) in this respect. This standardized protocol allows a computer with the help of an embedded TPM chip to remotely attest that it is in a healthy state. Guaranteeing that different attestations by the same computer cannot be linked was an explicit and important design goal of the standard in order to protect the privacy of the user of the computer. Surprisingly, none of the standardized or otherwise proposed DAA protocols achieves privacy when the TPM is subverted, but they all rely on the honesty of the TPM. As the TPM is a piece of hardware, it is hardly possible to tell whether or not a given TPM follows the specified protocol. In this paper we study this setting and provide a new protocol that achieves privacy also in presence of subverted TPMs.

References

  1. 1.
    Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selectively randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54242-8_29 CrossRefGoogle Scholar
  2. 2.
    Alwen, J., Katz, J., Maurer, U., Zikas, V.: Collusion-preserving computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 124–143. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_9 CrossRefGoogle Scholar
  3. 3.
    Alwen, J., Shelat, A., Visconti, I.: Collusion-free protocols in the mediated model. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 497–514. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85174-5_28 CrossRefGoogle Scholar
  4. 4.
    Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In: CCS 2015 (2015)Google Scholar
  5. 5.
    Ball, J., Borger, J., Greenwald, G.: Revealed: how US and UK spy agencies defeat internet privacy and security. Guardian Weekly, September 2013Google Scholar
  6. 6.
    Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001). doi: 10.1007/3-540-45682-1_33 CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 1–19. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44371-2_1 CrossRefGoogle Scholar
  8. 8.
    Bellare, M., Sandhu, R.: The security of practical two-party RSA signature schemes. Cryptology ePrint Archive, Report 2001/060 (2001)Google Scholar
  9. 9.
    Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N., Warinschi, B.: Anonymous attestation with user-controlled linkability. Int. J. Inf. Secur. 12(3), 219–249 (2013)CrossRefGoogle Scholar
  10. 10.
    Bernhard, D., Fuchsbauer, G., Ghadafi, E.: Efficient signatures of knowledge and DAA in the standard model. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 518–533. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38980-1_33 CrossRefGoogle Scholar
  11. 11.
    Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryptography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144. Springer, Heidelberg (1998). doi: 10.1007/BFb0054122 CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Crypt. 17(4), 297–319 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy. MIT Press, Cambridge (2000)Google Scholar
  14. 14.
    Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994). doi: 10.1007/3-540-48329-2_26 Google Scholar
  15. 15.
    Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS 2004 (2004)Google Scholar
  16. 16.
    Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from bilinear maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol. 4968, pp. 166–178. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-68979-9_13 CrossRefGoogle Scholar
  17. 17.
    Brickell, E., Chen, L., Li, J.: Simplified security notions of direct anonymous attestation and a concrete scheme from pairings. Int. J. Inf. Secur. 8(5), 315–330 (2009)CrossRefGoogle Scholar
  18. 18.
    Brickell, E., Li, J.: A pairing-based DAA scheme further reducing TPM resources. Cryptology ePrint Archive, Report 2010/067 (2010)Google Scholar
  19. 19.
    Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware authentication and attestation. Int. J. Inf. Priv. Secur. Integr. 1(1), 3–33 (2011)Google Scholar
  20. 20.
    Burmester, M.V.D., Desmedt, Y.: All languages in NP have divertible zero-knowledge proofs and arguments under cryptographic assumptions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 1–10. Springer, Heidelberg (1991). doi: 10.1007/3-540-46877-3_1 Google Scholar
  21. 21.
    Camenisch, J., Drijvers, M., Edgington, A., Lehmann, A., Lindemann, R., Urian, R.: FIDO ECDAA algorithm, implementation draft. https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-algorithm-v1.1-id-20170202.html
  22. 22.
    Camenisch, J., Chen, L., Drijvers, M., Lehmann, A., Novick, D., Urian, R.: One TPM to bind them all: fixing TPM 2.0 for provably secure anonymous attestation. In: IEEE S&P 2017 (2017)Google Scholar
  23. 23.
    Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong Diffie Hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.) Trust 2016. LNCS, vol. 9824, pp. 1–20. Springer, Cham (2016). doi: 10.1007/978-3-319-45572-3_1 CrossRefGoogle Scholar
  24. 24.
    Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation with subverted TPMs. Cryptology ePrint Archive, Report 2017/200 (2017)Google Scholar
  25. 25.
    Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anonymous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 234–264. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49387-8_10 CrossRefGoogle Scholar
  26. 26.
    Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01001-9_25 CrossRefGoogle Scholar
  27. 27.
    Camenisch, J., Lehmann, A.: (Un)linkable pseudonyms for governmental databases. In: CCS 2015 (2015)Google Scholar
  28. 28.
    Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003). doi: 10.1007/978-3-540-45146-4_8 CrossRefGoogle Scholar
  29. 29.
    Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997). doi: 10.1007/BFb0052252 CrossRefGoogle Scholar
  30. 30.
    Canetti, R.: Universally composable signature, certification, and authentication. In: CSFW 2004 (2004)Google Scholar
  31. 31.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000)Google Scholar
  32. 32.
    Canetti, R., Vald, M.: Universally composable security with local adversaries. In: Visconti, I., Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 281–301. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32928-9_16 CrossRefGoogle Scholar
  33. 33.
    Chaum, D.: Achieving electronic privacy. Sci. Am. 267(2), 96–101 (1992)CrossRefGoogle Scholar
  34. 34.
    Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993). doi: 10.1007/3-540-48071-4_7 Google Scholar
  35. 35.
    Chatterjee, S., Hankerson, D., Knapp, E., Menezes, A.: Comparing two pairing-based aggregate signature schemes. Des. Codes Crypt. 55(2), 141–167 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Chen, L.: A DAA scheme requiring less TPM resources. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350–365. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16342-5_26 CrossRefGoogle Scholar
  37. 37.
    Chen, L., Morrissey, P., Smart, N.P.: Pairings in trusted computing. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 1–17. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85538-5_1 CrossRefGoogle Scholar
  38. 38.
    Chen, L., Page, D., Smart, N.P.: On the design and implementation of an efficient DAA scheme. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 223–237. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12510-2_16 CrossRefGoogle Scholar
  39. 39.
    Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F., Zhang, M.: Cryptographic reverse firewall via malleable smooth projective hash functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 844–876. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53887-6_31 CrossRefGoogle Scholar
  40. 40.
    Chen, X., Feng, D.: Direct anonymous attestation for next generation TPM. J. Comput. 3(12), 43–50 (2008)Google Scholar
  41. 41.
    Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive, Report 2016/086 (2016)Google Scholar
  42. 42.
    Cramer, R.J.F., Pedersen, T.P.: Improved privacy in wallets with observers. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 329–343. Springer, Heidelberg (1994). doi: 10.1007/3-540-48285-7_29 Google Scholar
  43. 43.
    Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53018-4_13 CrossRefGoogle Scholar
  44. 44.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985). doi: 10.1007/3-540-39568-7_2 CrossRefGoogle Scholar
  45. 45.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). doi: 10.1007/3-540-47721-7_12 Google Scholar
  46. 46.
    Greenwald, G.: No Place to Hide: Edward Snowden, the NSA, and the U.S. Surveillance State. Metropolitan Books, New York (2014)Google Scholar
  47. 47.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78967-3_24 CrossRefGoogle Scholar
  48. 48.
    Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable security in the tamper-proof hardware model under minimal complexity. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 367–399. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53641-4_15 CrossRefGoogle Scholar
  49. 49.
    International Organization for Standardization: ISO/IEC 20008–2: Information Technology - Security Techniques - Anonymous Digital Signatures - Part 2: Mechanisms Using a Group Public Key (2013)Google Scholar
  50. 50.
    International Organization for Standardization: ISO/IEC 11889: Information Technology - Trusted Platform Module Library (2015)Google Scholar
  51. 51.
    Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72540-4_7 CrossRefGoogle Scholar
  52. 52.
    Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28628-8_21 CrossRefGoogle Scholar
  53. 53.
    Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 657–686. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46803-6_22 Google Scholar
  54. 54.
    Okamoto, T., Ohta, K.: Divertible zero knowledge interactive proofs and commutative random self-reducibility. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 134–149. Springer, Heidelberg (1990). doi: 10.1007/3-540-46885-4_16 Google Scholar
  55. 55.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). doi: 10.1007/3-540-48910-X_16 Google Scholar
  56. 56.
    Perlroth, N., Larson, J., Shane, S.: N.S.A. able to foil basic safeguards of privacy on web. The New York Times, September 2013Google Scholar
  57. 57.
    Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53890-6_2 CrossRefGoogle Scholar
  58. 58.
    Russell, A., Tang, Q., Yung, M., Zhou, H.: Destroying steganography via amalgamation: kleptographically CPA secure public key encryption. Cryptology ePrint Archive, Report 2016/530 (2016)Google Scholar
  59. 59.
    Trusted Computing Group: TPM main specification version 1.2 (2004)Google Scholar
  60. 60.
    Trusted Computing Group: Trusted platform module library specification, family “2.0” (2014)Google Scholar
  61. 61.
    Yao, A.C.C.: Protocols for secure computations (extended abstract). In: FOCS 1982 (1982)Google Scholar
  62. 62.
    Young, A., Yung, M.: Kleptography: using cryptography against cryptography. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer, Heidelberg (1997). doi: 10.1007/3-540-69053-0_6 Google Scholar
  63. 63.
    Young, A., Yung, M.: The prevalence of kleptographic attacks on discrete-log based cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 264–276. Springer, Heidelberg (1997). doi: 10.1007/BFb0052241 CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  1. 1.IBM Research – ZurichRüschlikonSwitzerland
  2. 2.Department of Computer ScienceETH ZurichZürichSwitzerland

Personalised recommendations