Advertisement

Real-Time Calibration of a Feedback Trap

  • Momčilo GavrilovEmail author
Chapter
  • 309 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Feedback traps use closed-loop control to trap or manipulate small particles and molecules in solution. They have been applied to the measurement of physical and chemical properties of particles and to explore fundamental questions in the non-equilibrium statistical mechanics of small systems. These applications have been hampered by drifts in the electric forces used to manipulate the particles. Although the drifts are small for measurements on the order of seconds, they dominate on time scales of minutes or slower. Here, we show that a recursive maximum likelihood (RML) algorithm can allow real-time measurement and control of electric and stochastic forces over time scales of hours. Simulations show that the RML algorithm recovers known parameters accurately. Experimental estimates of diffusion coefficients are also consistent with expected physical properties.

References

  1. 1.
    A. Cho, One cool way to erase information. Science 332, 171 (2011)ADSGoogle Scholar
  2. 2.
    R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–190 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Q. Wang, W.E. Moerner, Single-molecule motions enable direct visualization of biomolecular interactions in solution. Nat. Methods 11(5), 556–558 (2014)CrossRefGoogle Scholar
  5. 5.
    M. Gavrilov, Y. Jun, J. Bechhoefer, Real-time calibration of a feedback trap. Rev. Sci. Instrum. 85(9) (2014)Google Scholar
  6. 6.
    Y. Jun, J. Bechhoefer, Virtual potentials for feedback traps. Phys. Rev. E 86, 061106 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    M. Goulian, S.M. Simon, Tracking single proteins within cells. Biophys. J. 79, 2188–2198 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    T. Savin, P.S. Doyle, Static and dynamic errors in particle tracking microrheology. Biophys. J. 88, 623–638 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    A.E. Cohen, Trapping and Manipulating Single Molecules in Solution. Ph.D. thesis, Stanford University (2006)Google Scholar
  10. 10.
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland Personal Library (Elsevier Science, London, 1992)zbMATHGoogle Scholar
  11. 11.
    M. Gavrilov, Y. Jun, J. Bechhoefer, Particle dynamics in a virtual harmonic potential, in Proceeding of SPIE, vol. 8810 (2013)Google Scholar
  12. 12.
    K.J. Åström, B. Wittenmark, Adaptive Control, 2nd edn. (Dover, New York, 2008)Google Scholar
  13. 13.
    J. Bechhoefer, Feedback for physicists: a tutorial essay on control. Rev. Mod. Phys. 77, 783–836 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    I.D. Landau, G. Zito, Digital Control Systems: Design, Identification and Implementation (Springer, Berlin, 2006)Google Scholar
  15. 15.
    C.L. Vestergaard, P.C. Blainey, H. Flyvbjerg, Optimal estimation of diffusion coefficients from single-particle trajectories. Phys. Rev. E 89, 022726 (2014)Google Scholar
  16. 16.
    W.M. Haynes, CRC Handbook of Chemistry and Physics, 93rd edn. (Taylor & Francis, London, 2012)Google Scholar
  17. 17.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media (Martinus Nijhoff, The Hague, 1983)Google Scholar
  18. 18.
    S.H. Behrens, D.G. Grier, The charge of glass and silica surfaces. J. Chem. Phys. 115(14), 6716–6721 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Y. Jian, Q. Wang, A.E. Cohen, N. Douglas, J. Frydman, W.E. Moerner, Hardware-based anti-Brownian electrokinetic trap (ABEL trap) for single molecules: control loop simulations and application to ATP binding stoichiometry in multi-subunit enzymes, in Proceeding of SPIE - Optical Trapping and Optical Micromanipulation, vol. 703807 (2008)Google Scholar
  20. 20.
    A.P. Fields, A.E. Cohen, Electrokinetic trapping at the one nanometer limit. PNAS 108, 8937–8942 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    A.P. Fields, A.E. Cohen, Optimal tracking of a Brownian particle. Opt. Express 20, 22585–22601 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biophysics and Biophysical ChemistryJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations