Advertisement

Indistinguishability Obfuscation from Trilinear Maps and Block-Wise Local PRGs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10401)

Abstract

We consider the question of finding the lowest degree L for which L-linear maps suffice to obtain IO. The current state of the art (Lin, EUROCRYPT’16, CRYPTO ’17; Lin and Vaikunthanathan, FOCS’16; Ananth and Sahai, EUROCRYPT ’17) is that L-linear maps (under suitable security assumptions) suffice for IO, assuming the existence of pseudo-random generators (PRGs) with output locality L. However, these works cannot answer the question of whether \(L < 5\) suffices, as no polynomial-stretch PRG with locality lower than 5 exists.

In this work, we present a new approach that relies on the existence of PRGs with block-wise locality L, i.e., every output bit depends on at most L (disjoint) input blocks, each consisting of up to \(\log \lambda \) input bits. We show that the existence of PRGs with block-wise locality is plausible for any \(L \ge 3\), and also provide:
  • A construction of a general-purpose indistinguishability obfuscator from L-linear maps and a subexponentially-secure PRG with block-wise locality L and polynomial stretch.

  • A construction of general-purpose functional encryption from L-linear maps and any slightly super-polynomially secure PRG with block-wise locality L and polynomial stretch.

All our constructions are based on the SXDH assumption on L-linear maps and subexponential Learning With Errors (LWE) assumption, and follow by instantiating our new generic bootstrapping theorems with Lin’s recently proposed FE scheme (CRYPTO ’17). Inherited from Lin’s work, our security proof requires algebraic multilinear maps (Boneh and Silverberg, Contemporary Mathematics), whereas security when using noisy multilinear maps is based on a family of more complex assumptions that hold in the generic model.

Our candidate PRGs with block-wise locality are based on Goldreich’s local functions, and we show that the security of instantiations with block-wise locality \(L \ge 3\) is backed by similar validation as constructions with (conventional) locality 5. We further complement this with hardness amplification techniques that further weaken the pseudorandomness requirements.

Notes

Acknowledgements

The authors thank Benny Applebaum and Vinod Vaikuntanathan for many helpful discussions and insights.

Huijia Lin was supported in part by NSF grants CNS-1528178, CNS-1514526, and CNS-1652849 (CAREER). Stefano Tessaro was supported in part by NSF grants CNS-1423566, CNS-1528178, CNS-1553758 (CAREER), and IIS-152804.

References

  1. 1.
    Allen, S.R., O’Donnell, R., Witmer, D.: How to refute a random CSP. In: 56th FOCS, Berkeley, CA, USA, pp. 689–708, 17–20 October 2015Google Scholar
  2. 2.
    Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47989-6_15 CrossRefGoogle Scholar
  3. 3.
    Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: indistinguishability obfuscation from non-compact functional encryption. IACR Cryptology ePrint Archive, vol. 2015, p. 730 (2015)Google Scholar
  4. 4.
    Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps. Cryptology ePrint Archive, Report 2016/1097 (2016). http://eprint.iacr.org/2016/1097
  5. 5.
    Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding Barrington’s theorem. In: ACM CCS 2014, Scottsdale, AZ, USA, pp. 646–658, 3–7 November 2014Google Scholar
  6. 6.
    Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguishability obfuscations of circuits over GGH13. In: ICALP 2017. LNCS, vol. 80. Springer, Heidelberg (2017)Google Scholar
  7. 7.
    Applebaum, B.: Pseudorandom generators with long stretch and low locality from random local one-way functions. In: 44th ACM STOC, New York, NY, USA, pp. 805–816, 19–22 May 2012Google Scholar
  8. 8.
    Applebaum, B.: The cryptographic hardness of random local functions – survey. Cryptology ePrint Archive, Report 2015/165 (2015). http://eprint.iacr.org/2015/165
  9. 9.
    Applebaum, B., Bogdanov, A., Rosen, A.: A dichotomy for local small-bias generators. J. Cryptol. 29, 577–596 (2016)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–556. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_21 CrossRefGoogle Scholar
  11. 11.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC\(^{\text{0}}\). In: FOCS, pp. 166–175 (2004)Google Scholar
  12. 12.
    Applebaum, B., Lovett, S.: Algebraic attacks against random local functions and their countermeasures. In: 48th ACM STOC, Cambridge, MA, USA, pp. 1087–1100, 18–21 June 2016Google Scholar
  13. 13.
    Applebaum, B., Raykov, P.: Fast pseudorandom functions based on expander graphs. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 27–56. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53641-4_2 CrossRefGoogle Scholar
  14. 14.
    Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree pseudorandom generators (or: sum-of-squares meets program obfuscation). Cryptology ePrint Archive, Report 2017/312 (2017). http://eprint.iacr.org/2017/312
  15. 15.
    Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_13 CrossRefGoogle Scholar
  16. 16.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi: 10.1007/3-540-44647-8_1 CrossRefGoogle Scholar
  17. 17.
    Bitansky, N., Garg, S., Lin, H., Pass, R., Telang, S.: Succinct randomized encodings and their applications. In: Proceedings of 47th Annual ACM on Symposium on Theory of Computing, STOC 2015, 14–17 June 2015, Portland, OR, USA, pp. 439–448 (2015)Google Scholar
  18. 18.
    Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53644-5_15 CrossRefGoogle Scholar
  19. 19.
    Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a nash equilibrium. In: Guruswami [49], pp. 1480–1498 (2015)Google Scholar
  20. 20.
    Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, 17–20 October 2015, Berkeley, CA, USA, pp. 171–190 (2015)Google Scholar
  21. 21.
    Bogdanov, A., Qiao, Y.: On the security of Goldreich’s one-way function. Comput. Complex. 21(1), 83–127 (2012)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006). doi: 10.1007/11761679_34 CrossRefGoogle Scholar
  23. 23.
    Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Contemp. Math. 324, 71–90 (2002)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54242-8_1 CrossRefGoogle Scholar
  25. 25.
    Canetti, R., Lin, H., Tessaro, S., Vaikuntanathan, V.: Obfuscation of probabilistic circuits and applications. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 468–497. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_19 CrossRefGoogle Scholar
  26. 26.
    Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the achievability of simulation-based security for functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 519–535. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_29 CrossRefGoogle Scholar
  27. 27.
    Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 278–307. Springer, Cham (2017). doi: 10.1007/978-3-319-56617-7_10 CrossRefGoogle Scholar
  28. 28.
    Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46800-5_1 Google Scholar
  29. 29.
    Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). doi: 10.1007/3-540-48658-5_25 Google Scholar
  30. 30.
    Cook, J., Etesami, O., Miller, R., Trevisan, L.: Goldreich’s one-way function candidate and myopic backtracking algorithms. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 521–538. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00457-5_31 CrossRefGoogle Scholar
  31. 31.
    Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47989-6_12 CrossRefGoogle Scholar
  32. 32.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40041-4_26 CrossRefGoogle Scholar
  33. 33.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47989-6_13 CrossRefGoogle Scholar
  34. 34.
    Cryan, M., Miltersen, P.B.: On pseudorandom generators in NC0. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 272–284. Springer, Heidelberg (2001). doi: 10.1007/3-540-44683-4_24 CrossRefGoogle Scholar
  35. 35.
    Dodis, Y., Impagliazzo, R., Jaiswal, R., Kabanets, V.: Security amplification for Interactive cryptographic primitives. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 128–145. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00457-5_9 CrossRefGoogle Scholar
  36. 36.
    Döttling, N., Garg, S., Gupta, D., Miao, P., Mukherjee, P.: Obfuscation from low noise multilinear maps. Cryptology ePrint Archive, Report 2016/599 (2016). http://eprint.iacr.org/2016/599
  37. 37.
    Dwork, C., Naor, M., Reingold, O., Rothblum, G.N., Vadhan, S.P.: On the complexity of differentially private data release: efficient algorithms and hardness results. In: 41st ACM STOC, Bethesda, MD, USA, pp. 381–390, 31 May–2 June 2009Google Scholar
  38. 38.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38348-9_1 CrossRefGoogle Scholar
  39. 39.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26–29 October 2013, Berkeley, CA, USA, pp. 40–49 (2013)Google Scholar
  40. 40.
    Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 480–511. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49099-0_18 CrossRefGoogle Scholar
  41. 41.
    Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53644-5_10 CrossRefGoogle Scholar
  42. 42.
    Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of finding a nash equilibrium. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 579–604. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53008-5_20 CrossRefGoogle Scholar
  43. 43.
    Garg, S., Pandey, O., Srinivasan, A., Zhandry, M.: Breaking the sub-exponential barrier in obfustopia. Cryptology ePrint Archive, Report 2016/102 (2016). http://eprint.iacr.org/2016/102
  44. 44.
    Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_20 CrossRefGoogle Scholar
  45. 45.
    Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear subgroup elimination assumption. In: Guruswami [49], pp. 151–170 (2015)Google Scholar
  46. 46.
    Goldreich, O.: Candidate one-way functions based on expander graphs. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 7, no. 90 (2000)Google Scholar
  47. 47.
    Goldreich, O.: Foundations of Cryptography – Basic Tools. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  48. 48.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32009-5_11 CrossRefGoogle Scholar
  49. 49.
    Guruswami, V. (ed.) IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17–20 October 2015. IEEE Computer Society (2015)Google Scholar
  50. 50.
    Komargodski, I., Segev, G.: From minicrypt to obfustopia via private-key functional encryption. Cryptology ePrint Archive, Report 2017/080 (2017). http://eprint.iacr.org/2017/080
  51. 51.
    Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_14 CrossRefGoogle Scholar
  52. 52.
    Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49890-3_2 CrossRefGoogle Scholar
  53. 53.
    Lin, H.: Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In: CRYPTO 2017. LNCS. Springer, Heidelberg (2017)Google Scholar
  54. 54.
    Lin, H., Pass, R., Seth, K., Telang, S.: Output-compressing randomized encodings and applications. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 96–124. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49096-9_5 CrossRefGoogle Scholar
  55. 55.
    Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-wise local PRGs. Cryptology ePrint Archive, Report 2017/250 (2017). http://eprint.iacr.org/2017/250
  56. 56.
    Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, New Brunswick, NJ, USA, 9–11 October 2016Google Scholar
  57. 57.
    Lombardi, A., Vaikuntanathan, V.: On the non-existence of blockwise 2-local PRGs with applications to indistinguishability obfuscation. Cryptology ePrint Archive, Report 2017/301 (2017). http://eprint.iacr.org/2017/301
  58. 58.
    Maurer, U., Tessaro, S.: A hardcore lemma for computational indistinguishability: security amplification for arbitrarily weak PRGs with optimal stretch. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 237–254. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-11799-2_15 CrossRefGoogle Scholar
  59. 59.
    Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53008-5_22 CrossRefGoogle Scholar
  60. 60.
    Mossel, E., Shpilka, A., Trevisan, L.: On e-biased generators in NC0. In: 44th FOCS, Cambridge, MA, USA, pp. 136–145, 11–14 October 2003Google Scholar
  61. 61.
    O’Donnell, R., Witmer, D.: Goldreich’s PRG: evidence for near-optimal polynomial stretch. In: IEEE 29th Conference on Computational Complexity, CCC 2014, 11–13 June 2014, Vancouver, BC, Canada, pp. 1–12 (2014)Google Scholar
  62. 62.
    Parno, B., Raykova, M., Vaikuntanathan, V.: How to delegate and verify in public: verifiable computation from attribute-based encryption. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 422–439. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28914-9_24 CrossRefGoogle Scholar
  63. 63.
    Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44371-2_28 CrossRefGoogle Scholar
  64. 64.
    Ullman, J.: Answering \(n_{2+o(1)}\) counting queries with differential privacy is hard. In: 45th ACM STOC, Palo Alto, CA, USA, pp. 361–370, 1–4 June 2013Google Scholar
  65. 65.
    Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46803-6_15 Google Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  1. 1.University of California, Santa BarbaraSanta BarbaraUSA

Personalised recommendations