Advertisement

Indistinguishability Obfuscation from SXDH on 5-Linear Maps and Locality-5 PRGs

  • Huijia Lin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10401)

Abstract

Two recent works [Lin, EUROCRYPT 2016, Lin and Vaikuntanathan, FOCS 2016] showed how to construct Indistinguishability Obfuscation (IO) from constant degree multilinear maps. However, the concrete degrees of multilinear maps used in their constructions exceed 30. In this work, we reduce the degree of multilinear maps needed to 5, by giving a new construction of IO from asymmetric L-linear maps and a pseudo-random generator (PRG) with output locality L and polynomial stretch. When plugging in a candidate PRG with locality-5 (e.g., [Goldreich, ECCC 2010, Mossel, Shpilka, and Trevisan, FOCS 2013, O’Donnald and Wither, CCC 2014]), we obtain a construction of IO from 5-linear maps.

Our construction improves the state-of-the-art at two other fronts: First, it relies on “classical” multilinear maps, instead of their powerful generalization of graded encodings. Second, it comes with a security reduction to (i) the SXDH assumption on algebraic multilinear maps [Boneh and Silverberg, Contemporary Mathematics, Rothblum, TCC 2013], (ii) the security of PRG, and (iii) sub-exponential LWE, all with sub-exponential hardness. The SXDH assumption is weaker and/or simpler than assumptions on multilinear maps underlying previous IO constructions. When noisy multilinear maps [Garg et al., EUROCRYPT 2013] are used instead, security is based on a family of more complex assumptions that hold in the generic model.

Notes

Acknowledgements

The author thanks Benny Applebaum, Nir Bitansky, Stefano Tessaro, and Vinod Vaikuntanathan for many helpful and insightful discussions.

References

  1. 1.
    Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46447-2_33 Google Scholar
  2. 2.
    Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47989-6_15 CrossRefGoogle Scholar
  3. 3.
    Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: indistinguishability obfuscation from non-compact functional encryption. IACR Cryptology ePrint Archive, vol. 2015, p. 730 (2015)Google Scholar
  4. 4.
    Ananth, P., Sahai, A.: Projective arithmetic functional encryption and indistinguishability obfuscation from degree-5 multilinear maps. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 152–181. Springer, Cham (2017). doi: 10.1007/978-3-319-56620-7_6 CrossRefGoogle Scholar
  5. 5.
    Ananth, P.V., Gupta, D., Ishai, Y., Sahai, A.: Optimizing obfuscation: avoiding Barrington’s theorem. In: ACM CCS 2014, Scottsdale, AZ, USA, pp. 646–658, 3–7 November 2014Google Scholar
  6. 6.
    Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguishability obfuscations of circuits over GGH 2013. In: ICALP 2017. LNCS. Springer, Heidelberg (2017)Google Scholar
  7. 7.
    Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–556. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_21 CrossRefGoogle Scholar
  8. 8.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in nc\(^{\text{0}}\). In: FOCS, pp. 166–175 (2004)Google Scholar
  9. 9.
    Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree pseudorandom generators (or: sum-of-squares meets program obfuscation). Cryptology ePrint Archive, Report 2017/312 (2017). http://eprint.iacr.org/2017/312
  10. 10.
    Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_13 CrossRefGoogle Scholar
  11. 11.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi: 10.1007/3-540-44647-8_1 CrossRefGoogle Scholar
  12. 12.
    Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 470–491. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_20 CrossRefGoogle Scholar
  13. 13.
    Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to obfustopia through secret-key functional encryption. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 391–418. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53644-5_15 CrossRefGoogle Scholar
  14. 14.
    Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, 17–20 October 2015, Berkeley, CA, USA, pp. 171–190 (2015)Google Scholar
  15. 15.
    Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Contemp. Math. 324, 71–90 (2002)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroizing attacks. Cryptology ePrint Archive, Report 2014/930 (2014). http://eprint.iacr.org/2014/930
  17. 17.
    Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54242-8_1 CrossRefGoogle Scholar
  18. 18.
    Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 278–307. Springer, Cham (2017). doi: 10.1007/978-3-319-56617-7_10 CrossRefGoogle Scholar
  19. 19.
    Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46800-5_1 Google Scholar
  20. 20.
    Coron, J.-S., et al.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47989-6_12 CrossRefGoogle Scholar
  21. 21.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40041-4_26 CrossRefGoogle Scholar
  22. 22.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 267–286. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47989-6_13 CrossRefGoogle Scholar
  23. 23.
    Cryan, M., Miltersen, P.B.: On pseudorandom generators in NC0. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 272–284. Springer, Heidelberg (2001). doi: 10.1007/3-540-44683-4_24 CrossRefGoogle Scholar
  24. 24.
    Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49384-7_7 CrossRefGoogle Scholar
  25. 25.
    Döttling, N., Garg, S., Gupta, D., Miao, P., Mukherjee, P.: Obfuscation from low noise multilinear maps. Cryptology ePrint Archive, Report 2016/599 (2016). http://eprint.iacr.org/2016/599
  26. 26.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38348-9_1 CrossRefGoogle Scholar
  27. 27.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26–29 October 2013, Berkeley, CA, USA, pp. 40–49 (2013)Google Scholar
  28. 28.
    Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without obfuscation. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 480–511. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49099-0_18 CrossRefGoogle Scholar
  29. 29.
    Garg, S., Miles, E., Mukherjee, P., Sahai, A., Srinivasan, A., Zhandry, M.: Secure obfuscation in a weak multilinear map model. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 241–268. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53644-5_10 CrossRefGoogle Scholar
  30. 30.
    Garg, S., Mukherjee, P., Srinivasan, A.: Obfuscation without the vulnerabilities of multilinear maps. IACR Cryptology ePrint Archive, vol. 2016, p. 390 (2016)Google Scholar
  31. 31.
    Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 498–527. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_20 CrossRefGoogle Scholar
  32. 32.
    Gentry, C., Halevi, S., Maji, H.K., Sahai, A.: Zeroizing without zeroes: cryptanalyzing multilinear maps without encodings of zero. Cryptology ePrint Archive, Report 2014/929 (2014). http://eprint.iacr.org/2014/929
  33. 33.
    Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear subgroup elimination assumption. In: Guruswami [36], pp. 151–170 (2015)Google Scholar
  34. 34.
    Goldreich, O.: Candidate one-way functions based on expander graphs. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 7, no. 90 (2000)Google Scholar
  35. 35.
    Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_32 CrossRefGoogle Scholar
  36. 36.
    Guruswami, V. (ed.) IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, 17–20 October 2015. IEEE Computer Society, Berkeley (2015)Google Scholar
  37. 37.
    Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 244–256. Springer, Heidelberg (2002). doi: 10.1007/3-540-45465-9_22 CrossRefGoogle Scholar
  38. 38.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78967-3_9 CrossRefGoogle Scholar
  39. 39.
    Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: more efficient multilinear maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-55220-5_14 CrossRefGoogle Scholar
  40. 40.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_4 CrossRefGoogle Scholar
  41. 41.
    Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49890-3_2 CrossRefGoogle Scholar
  42. 42.
    Lin, H.: Indistinguishability obfuscation from DDH on 5-linear maps and locality-5 PRGs. Cryptology ePrint Archive, Report 2016/1096 (2016). http://eprint.iacr.org/2016/1096
  43. 43.
    Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-wise local PRGs. In: CRYPTO 2017 (2017, to appear)Google Scholar
  44. 44.
    Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In: IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, New Brunswick, NJ, USA, 9–11 October 2016Google Scholar
  45. 45.
    Lombardi, A., Vaikuntanathan, V.: On the non-existence of blockwise 2-local PRGs with applications to indistinguishability obfuscation. Cryptology ePrint Archive, Report 2017/301 (2017). http://eprint.iacr.org/2017/301
  46. 46.
    Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. IACR Cryptology ePrint Archive, vol. 2016, p. 147 (2016)Google Scholar
  47. 47.
    Mossel, E., Shpilka, A., Trevisan, L.: On e-biased generators in NC0. In: 44th Symposium on Foundations of Computer Science (FOCS 2003), 11–14 October 2003, Cambridge, MA, USA, Proceedings, pp. 136–145 (2003)Google Scholar
  48. 48.
    O’Donnell, R., Witmer, D.: Goldreich’s PRG: evidence for near-optimal polynomial stretch. In: IEEE 29th Conference on Computational Complexity, CCC 2014, Vancouver, BC, Canada, 11–13 June 2014, pp. 1–12 (2014)Google Scholar
  49. 49.
    Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-secure multilinear encodings. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 500–517. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44371-2_28 CrossRefGoogle Scholar
  50. 50.
    Rothblum, R.D.: On the circular security of bit-encryption. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 579–598. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36594-2_32 CrossRefGoogle Scholar
  51. 51.
    Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual Symposium on Foundations of Computer Science, 3–5 November 1982, Chicago, Illinois, USA, pp. 160–164 (1982)Google Scholar
  52. 52.
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS, pp. 162–167 (1986)Google Scholar
  53. 53.
    Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46803-6_15 Google Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  1. 1.University of California, Santa BarbaraSanta BarbaraUSA

Personalised recommendations